Detection and characterization of the Dezidougou virus (genus Negevirus) in mosquitoes (Ochlerotatus caspius) collected in the Republic of Sakha (Yakutia)

Cover Image

Cite item

Abstract

Introduction. Monitoring and research on arthropod-borne microorganisms is important. Recently, with the development of next-generation sequencing methods, many previously unknown viruses have been identified in insects.

Aim of the study. Isolation of viruses from mosquitoes sampled in the Republic of Sakha (Yakutia), followed by the study of a new for Russia negevirus isolated from mosquitoes of the species Ochlerotatus caspius, including determination of its complete nucleotide sequence, phylogenetic and virological characteristics.

Materials and methods. Dezidougou virus isolation was performed on C6/36 (Aedes albopictus) cell culture. Electron microscopy was performed using a JEM 1400 electron microscope. Nucleotide sequence screening was performed by NGS on a high-throughput sequencer MiSeq, Illumina (USA). Full genome nucleotide sequence was determined by Sanger sequencing. Phylogenetic analysis was performed using GenBank database, using Vector NTI Advance 11 and MEGA 11 programs.

Results. The virus isolated from mosquitoes replicated efficiently in C6/36 cells, causing their death. However, it did not replicate in the mammalian cell cultures used. The isolated virus did not cause pathologic manifestations in suckling mice when infected intracerebrally. Electron microscopic examination of the purified virus-containing suspension showed the presence of spherical viral particles with a diameter of 45‒55 nm. The results of full genome sequencing identified it as belonging to Dezidougou virus, first isolated in Côte d’Ivoire. The nucleotide sequence of the genome of Yakutsk 2023 strain of Dezidougou virus was deposited in GenBank (PP975071.1).

Conclusion. Dezidougou virus of genus Negevirus was isolated and characterized for the first time in the Russian Federation. Further studies on the prevalence of negeviruses, their virological features, potential importance for public health and their impact on vector competence of vectors are important and promising.

About the authors

Marina A. Stepanyuk

State Research Center of Virology and Biotechnology «Vector»

Email: stepanyuk_ma@vector.nsc.ru
ORCID iD: 0009-0002-2658-7746

junior researcher of the department of molecular virology of flaviviruses and viral hepatitis

Russian Federation, 630559, Koltsovo, Novosibirsk region

Stanislav S. Legostaev

State Research Center of Virology and Biotechnology «Vector»

Email: legostaev_ss@vector.nsc.ru
ORCID iD: 0000-0002-6202-445X

trainee researcher of the department of molecular virology of flaviviruses and viral hepatitis

Russian Federation, 630559, Koltsovo, Novosibirsk region

Kristina V. Karelina

State Research Center of Virology and Biotechnology «Vector»

Email: karelina_kv@vector.nsc.ru
ORCID iD: 0009-0003-1421-1765

trainee researcher of the department of molecular virology of flaviviruses and viral hepatitis

Russian Federation, 630559, Koltsovo, Novosibirsk region

Nina F. Timofeeva

M.K. Ammosov North-Eastern Federal University

Email: niakswan@mail.ru
ORCID iD: 0000-0001-9895-5873

Researcher

Russian Federation, 677000, Republic of Sakha (Yakutia), Yakutsk

Ksenia F. Emtsova

State Research Center of Virology and Biotechnology «Vector»

Email: k.emtsova@g.nsu.ru
ORCID iD: 0009-0003-5165-5357

trainee researcher of microscopic research department

Russian Federation, 630559, Koltsovo, Novosibirsk region

Olesia V. Ohlopkova

State Research Center of Virology and Biotechnology «Vector»

Author for correspondence.
Email: ohlopkova_ov@vector.nsc.ru
ORCID iD: 0000-0002-8214-7828

Candidate of Biological Sciences, Senior Researcher, Department of Biophysics and Environmental Research

Russian Federation, 630559, Koltsovo, Novosibirsk region

Oleg S. Taranov

State Research Center of Virology and Biotechnology «Vector»

Email: taranov@vector.nsc.ru
ORCID iD: 0000-0002-6746-8092

head of microscopic research department

Russian Federation, 630559, Koltsovo, Novosibirsk region

Vladimir A. Ternovoi

State Research Center of Virology and Biotechnology «Vector»

Email: tern@vector.nsc.ru
ORCID iD: 0000-0003-1275-171X

Candidate of Biological Sciences, Leading Researcher, Department of Molecular Virology of Flaviviruses and Viral Hepatitis

Russian Federation, 630559, Koltsovo, Novosibirsk region

Albert V. Protopopov

M.K. Ammosov North-Eastern Federal University

Email: a.protopopov@mail.ru
ORCID iD: 0000-0001-6543-4596

Doctor of Biological Sciences, Chief Researcher

Russian Federation, 677000, Republic of Sakha (Yakutia), Yakutsk

Valery B. Loktev

State Research Center of Virology and Biotechnology «Vector»

Email: loktev@vector.nsc.ru
ORCID iD: 0000-0002-0229-321X

MD, PhD, DSc, Prof., academician RANS, Chief Researcher, Department of Molecular Virology of Flaviviruses and Viral Hepatitis

Russian Federation, 630559, Koltsovo, Novosibirsk region

Victor A. Svyatchenko

State Research Center of Virology and Biotechnology «Vector»

Email: svyat@vector.nsc.ru
ORCID iD: 0000-0002-2729-0592

Candidate of Biological Sciences, Leading Researcher, Department of Molecular Virology of Flaviviruses and Viral Hepatitis

Russian Federation, 630559, Koltsovo, Novosibirsk region

Alexander P. Agafonov

State Research Center of Virology and Biotechnology «Vector»

Email: agafonov@vector.nsc.ru
ORCID iD: 0000-0003-2577-0434

Doctor of Biological Sciences, Director General, Federal Biotechnology and Biotechnology

Russian Federation, 630559, Koltsovo, Novosibirsk region

References

  1. Kuno G. A survey of the relationships among the viruses not considered arboviruses, vertebrates, and arthropods. Acta Virol. 2004; 48(3): 135–44.
  2. Calzolari M., Zé-Zé L., Vázquez A., Sánchez Seco MP., Amaro F., Dottori M. Insect-specific flaviviruses, a worldwide widespread group of viruses only detected in insects. Infect. Genet. Evol. 2016; 40: 381–8. https://doi.org/10.1016/j.meegid.2015.07.032
  3. Roundy CM., Azar SR., Rossi SL., Weaver SC., Vasilakis N. Insect-specific viruses: a historical overview and recent developments. Adv. Virus Res. 2017; 98: 119–46. https://doi.org/10.1016/bs.aivir.2016.10.001
  4. Blitvich B.J., Firth A.E. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses. 2015; 7(4): 1927–59. https://doi.org/doi: 10.3390/v7041927
  5. Carvalho V.L., Long M.T. Insect-specific viruses: an overview and their relationship to arboviruses of concern to humans and animals. Virology. 2021; 557: 34–43. https://doi.org/10.1016/j.virol.2021.01.007
  6. Vasilakis N., Forrester N.L., Palacios G., Nasar F., Savji N., Rossi SL., et al. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J. Virol. 2013; 87(5): 2475–88. https://doi.org/10.1128/JVI.00776-12
  7. Nunes M.R.T., Contreras-Gutierrez M.A., Guzman H., Martins L.C., Barbirato M.F., Savit C., et al. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus. Virology. 2017; 504: 152–67. https://doi.org/10.1016/j.virol.2017.01.022
  8. Auguste A.J., Carrington C.V.F., Forrester N.L., Popov V.L., Guzman H., Widen S.G., et al. Characterization of a novel Negevirus and a novel Bunyavirus isolated from Culex (Culex) declarator mosquitoes in Trinidad. J. Gen. Virol. 2014; 95(Pt. 2): 481–5. https://doi.org/10.1099/vir.0.058412-0
  9. Truong Nguyen P.T., Culverwell C.L., Suvanto M.T., Korhonen E.M., Uusitalo R., Vapalahti O., et al. Characterisation of the RNA virome of nine Ochlerotatus species in Finland. Viruses. 2022; 14(7): 1489. https://doi.org/10.3390/v14071489
  10. da Silva Ribeiro A.C., Martins L.C., da Silva S.P., de Almeida Medeiros D.B., Miranda K.K.P., Nunes Neto J.P., et al. Negeviruses isolated from mosquitoes in the Brazilian Amazon. Virol. J. 2022; 19(1): 17. https://doi.org/10.1186/s12985-022-01743-z
  11. Hermanns K., Marklewitz M., Zirkel F., Overheul G.J., Page R.A., Loaiza J.R., et al. Agua Salud alphavirus defines a novel lineage of insect-specific alphaviruses discovered in the New World. J. Gen. Virol. 2020; 101(1): 96–104. https://doi.org/10.1099/jgv.0.001344
  12. Auguste A.J., Langsjoen R.M., Porier D.L., Erasmus J.H., Bergren N.A., Bolling B.G., et al. Isolation of a novel insect-specific flavivirus with immunomodulatory effects in vertebrate systems. Virology. 2021; 562: 50–62. https://doi.org/10.1016/j.virol.2021.07.004
  13. Svyatchenko V., Nikonov S., Mayorov A., Gelfond M., Loktev V. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagnosis Photodyn. Ther. 2021; 33: 102112. https://doi.org/10.1016/j.pdpdt.2020.102112
  14. Toth K., Spencer J., Dhar D., Sagartz J., Buller R., Painter G., et al. Hexadecyloxypropyl-cidofovir, CMX001, prevents adenovirus induced mortality in a permissive, immunosuppressed animal model. Proc. Natl Acad. Sci. USA. 2008; 105(20): 7293–97. https://doi.org/10.1073/pnas.0800200105
  15. Lei C., Yang J., Hu J., Sun X. On the calculation of TCID 50 for quantitation of virus infectivity. Virol. Sin. 2021; 36(1): 141–4. https://doi.org/10.1007/s12250-020-00230-5
  16. Rodgers MA., Wilkinson E., Vallari A., McArthur C., Sthreshley L., Brennan CA., et al. Sensitive next-generation sequencing method reveals deep genetic diversity of HIV-1 in the Democratic Republic of the Congo. J. Virol. 2017; 91(6): e01841-16. https://doi.org/10.1128/JVI.01841-16
  17. Walker T., Jeffries C.L., Mansfield K.L., Johnson N. Mosquito cell lines: history, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom. Parasit. Vectors. 2014; 7: 382. https://doi.org/10.1186/1756-3305-7-382
  18. Müller G., Schlein Y. Plant tissues: the frugal diet of mosquitoes in adverse conditions. Med. Vet. Entomol. 2005; 19(4): 413–22. https://doi.org/10.1111/j.1365-2915.2005.00590.x
  19. Moreira L.A., Iturbe-Ormaetxe I., Jeffery J.A., Lu G., Pyke A.T., Hedges L.M., et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009; 139(7): 1268–78. https://doi.org/10.1016/j.cell.2009.11.042
  20. Öhlund P., Lundén H., Blomström A.L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes. 2019; 55(2): 127–37. https://doi.org/10.1007/s11262-018-01629-9
  21. Carvalho V.L., Prakoso D., Schwarz E.R., Logan T.D., Nunes B.T.D., Beachboard S.E., et al. Negevirus Piura suppresses Zika virus replication in mosquito cells. Viruses. 2024; 16(3): 350. https://doi.org/10.3390/v16030350
  22. Patterson EI., Kautz TF., Contreras-Gutierrez MA., Guzman H., Tesh RB., Hughes GL. Negeviruses reduce replication of alphaviruses during coinfection. J. Virol. 2021; 95(14): e0043321. https://doi.org/10.1128/JVI.00433-21
  23. Kent R.J., Crabtree M.B., Miller B.R. Transmission of West Nile virus by Culex quinquefasciatus say infected with Culex Flavivirus Izabal. PLoS Negl. Trop. Dis. 2010; 4(5): e671. https://doi.org/10.1371/journal.pntd.0000671
  24. Higgs S., Beaty B.J. Natural cycles of vector-borne pathogens. In: Marquardt M.C., ed. Biology of Disease Vectors. New York: Elsevier Academic Press; 2005: 167–85.
  25. Guerrero D., Cantaert T., Missé D. Aedes mosquito salivary components and their effect on the immune response to arboviruses. Front. Cell. Infect. Microbiol. 2020; 10: 407. https://doi.org/10.3389/fcimb.2020.00407

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Light microscopy (×200) of C6/36 cell culture infected with DEZV Yakutsk 2023 strain 120 hours after infection. On the left is a control of C6/36 cell culture.

Download (269KB)
3. Fig. 2. Transmission electron microscopy of a purified virus suspension. Rounded particles with a diameter of 45‒55 nm and an electron-dense region in the central part. Contrasted with 2% uranyl acetate. The scale is indicated on images.

Download (338KB)
4. Fig. 3. Phylodendrogram showing the maximum likelihood analysis of full-length viral sequences of DEZV and viruses of the genus Negevirus. The sequence characterized in this study is highlighted with the symbol (●). A, B, and C are the main branches of negeviruses.

Download (498KB)
5. Appendix 1
Download (228KB)

Copyright (c) 2025 Stepanyuk M.A., Legostaev S.S., Karelina K.V., Timofeeva N.F., Emtsova K.F., Ohlopkova O.V., Taranov O.S., Ternovoi V.A., Protopopov A.V., Loktev V.B., Svyatchenko V.A., Agafonov A.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).