Detection and characterization of the Dezidougou virus (genus Negevirus) in mosquitoes (Ochlerotatus caspius) collected in the Republic of Sakha (Yakutia)

封面图片

如何引用文章

详细

Introduction. Monitoring and research on arthropod-borne microorganisms is important. Recently, with the development of next-generation sequencing methods, many previously unknown viruses have been identified in insects.

Aim of the study. Isolation of viruses from mosquitoes sampled in the Republic of Sakha (Yakutia), followed by the study of a new for Russia negevirus isolated from mosquitoes of the species Ochlerotatus caspius, including determination of its complete nucleotide sequence, phylogenetic and virological characteristics.

Materials and methods. Dezidougou virus isolation was performed on C6/36 (Aedes albopictus) cell culture. Electron microscopy was performed using a JEM 1400 electron microscope. Nucleotide sequence screening was performed by NGS on a high-throughput sequencer MiSeq, Illumina (USA). Full genome nucleotide sequence was determined by Sanger sequencing. Phylogenetic analysis was performed using GenBank database, using Vector NTI Advance 11 and MEGA 11 programs.

Results. The virus isolated from mosquitoes replicated efficiently in C6/36 cells, causing their death. However, it did not replicate in the mammalian cell cultures used. The isolated virus did not cause pathologic manifestations in suckling mice when infected intracerebrally. Electron microscopic examination of the purified virus-containing suspension showed the presence of spherical viral particles with a diameter of 45‒55 nm. The results of full genome sequencing identified it as belonging to Dezidougou virus, first isolated in Côte d’Ivoire. The nucleotide sequence of the genome of Yakutsk 2023 strain of Dezidougou virus was deposited in GenBank (PP975071.1).

Conclusion. Dezidougou virus of genus Negevirus was isolated and characterized for the first time in the Russian Federation. Further studies on the prevalence of negeviruses, their virological features, potential importance for public health and their impact on vector competence of vectors are important and promising.

作者简介

Marina Stepanyuk

State Research Center of Virology and Biotechnology «Vector»

Email: stepanyuk_ma@vector.nsc.ru
ORCID iD: 0009-0002-2658-7746

junior researcher of the department of molecular virology of flaviviruses and viral hepatitis

俄罗斯联邦, 630559, Koltsovo, Novosibirsk region

Stanislav Legostaev

State Research Center of Virology and Biotechnology «Vector»

Email: legostaev_ss@vector.nsc.ru
ORCID iD: 0000-0002-6202-445X

trainee researcher of the department of molecular virology of flaviviruses and viral hepatitis

俄罗斯联邦, 630559, Koltsovo, Novosibirsk region

Kristina Karelina

State Research Center of Virology and Biotechnology «Vector»

Email: karelina_kv@vector.nsc.ru
ORCID iD: 0009-0003-1421-1765

trainee researcher of the department of molecular virology of flaviviruses and viral hepatitis

俄罗斯联邦, 630559, Koltsovo, Novosibirsk region

Nina Timofeeva

M.K. Ammosov North-Eastern Federal University

Email: niakswan@mail.ru
ORCID iD: 0000-0001-9895-5873

Researcher

俄罗斯联邦, 677000, Republic of Sakha (Yakutia), Yakutsk

Ksenia Emtsova

State Research Center of Virology and Biotechnology «Vector»

Email: k.emtsova@g.nsu.ru
ORCID iD: 0009-0003-5165-5357

trainee researcher of microscopic research department

俄罗斯联邦, 630559, Koltsovo, Novosibirsk region

Olesia Ohlopkova

State Research Center of Virology and Biotechnology «Vector»

编辑信件的主要联系方式.
Email: ohlopkova_ov@vector.nsc.ru
ORCID iD: 0000-0002-8214-7828

Candidate of Biological Sciences, Senior Researcher, Department of Biophysics and Environmental Research

俄罗斯联邦, 630559, Koltsovo, Novosibirsk region

Oleg Taranov

State Research Center of Virology and Biotechnology «Vector»

Email: taranov@vector.nsc.ru
ORCID iD: 0000-0002-6746-8092

head of microscopic research department

俄罗斯联邦, 630559, Koltsovo, Novosibirsk region

Vladimir Ternovoi

State Research Center of Virology and Biotechnology «Vector»

Email: tern@vector.nsc.ru
ORCID iD: 0000-0003-1275-171X

Candidate of Biological Sciences, Leading Researcher, Department of Molecular Virology of Flaviviruses and Viral Hepatitis

俄罗斯联邦, 630559, Koltsovo, Novosibirsk region

Albert Protopopov

M.K. Ammosov North-Eastern Federal University

Email: a.protopopov@mail.ru
ORCID iD: 0000-0001-6543-4596

Doctor of Biological Sciences, Chief Researcher

俄罗斯联邦, 677000, Republic of Sakha (Yakutia), Yakutsk

Valery Loktev

State Research Center of Virology and Biotechnology «Vector»

Email: loktev@vector.nsc.ru
ORCID iD: 0000-0002-0229-321X

MD, PhD, DSc, Prof., academician RANS, Chief Researcher, Department of Molecular Virology of Flaviviruses and Viral Hepatitis

俄罗斯联邦, 630559, Koltsovo, Novosibirsk region

Victor Svyatchenko

State Research Center of Virology and Biotechnology «Vector»

Email: svyat@vector.nsc.ru
ORCID iD: 0000-0002-2729-0592

Candidate of Biological Sciences, Leading Researcher, Department of Molecular Virology of Flaviviruses and Viral Hepatitis

俄罗斯联邦, 630559, Koltsovo, Novosibirsk region

Alexander Agafonov

State Research Center of Virology and Biotechnology «Vector»

Email: agafonov@vector.nsc.ru
ORCID iD: 0000-0003-2577-0434

Doctor of Biological Sciences, Director General, Federal Biotechnology and Biotechnology

俄罗斯联邦, 630559, Koltsovo, Novosibirsk region

参考

  1. Kuno G. A survey of the relationships among the viruses not considered arboviruses, vertebrates, and arthropods. Acta Virol. 2004; 48(3): 135–44.
  2. Calzolari M., Zé-Zé L., Vázquez A., Sánchez Seco MP., Amaro F., Dottori M. Insect-specific flaviviruses, a worldwide widespread group of viruses only detected in insects. Infect. Genet. Evol. 2016; 40: 381–8. https://doi.org/10.1016/j.meegid.2015.07.032
  3. Roundy CM., Azar SR., Rossi SL., Weaver SC., Vasilakis N. Insect-specific viruses: a historical overview and recent developments. Adv. Virus Res. 2017; 98: 119–46. https://doi.org/10.1016/bs.aivir.2016.10.001
  4. Blitvich B.J., Firth A.E. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses. 2015; 7(4): 1927–59. https://doi.org/doi: 10.3390/v7041927
  5. Carvalho V.L., Long M.T. Insect-specific viruses: an overview and their relationship to arboviruses of concern to humans and animals. Virology. 2021; 557: 34–43. https://doi.org/10.1016/j.virol.2021.01.007
  6. Vasilakis N., Forrester N.L., Palacios G., Nasar F., Savji N., Rossi SL., et al. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J. Virol. 2013; 87(5): 2475–88. https://doi.org/10.1128/JVI.00776-12
  7. Nunes M.R.T., Contreras-Gutierrez M.A., Guzman H., Martins L.C., Barbirato M.F., Savit C., et al. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus. Virology. 2017; 504: 152–67. https://doi.org/10.1016/j.virol.2017.01.022
  8. Auguste A.J., Carrington C.V.F., Forrester N.L., Popov V.L., Guzman H., Widen S.G., et al. Characterization of a novel Negevirus and a novel Bunyavirus isolated from Culex (Culex) declarator mosquitoes in Trinidad. J. Gen. Virol. 2014; 95(Pt. 2): 481–5. https://doi.org/10.1099/vir.0.058412-0
  9. Truong Nguyen P.T., Culverwell C.L., Suvanto M.T., Korhonen E.M., Uusitalo R., Vapalahti O., et al. Characterisation of the RNA virome of nine Ochlerotatus species in Finland. Viruses. 2022; 14(7): 1489. https://doi.org/10.3390/v14071489
  10. da Silva Ribeiro A.C., Martins L.C., da Silva S.P., de Almeida Medeiros D.B., Miranda K.K.P., Nunes Neto J.P., et al. Negeviruses isolated from mosquitoes in the Brazilian Amazon. Virol. J. 2022; 19(1): 17. https://doi.org/10.1186/s12985-022-01743-z
  11. Hermanns K., Marklewitz M., Zirkel F., Overheul G.J., Page R.A., Loaiza J.R., et al. Agua Salud alphavirus defines a novel lineage of insect-specific alphaviruses discovered in the New World. J. Gen. Virol. 2020; 101(1): 96–104. https://doi.org/10.1099/jgv.0.001344
  12. Auguste A.J., Langsjoen R.M., Porier D.L., Erasmus J.H., Bergren N.A., Bolling B.G., et al. Isolation of a novel insect-specific flavivirus with immunomodulatory effects in vertebrate systems. Virology. 2021; 562: 50–62. https://doi.org/10.1016/j.virol.2021.07.004
  13. Svyatchenko V., Nikonov S., Mayorov A., Gelfond M., Loktev V. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagnosis Photodyn. Ther. 2021; 33: 102112. https://doi.org/10.1016/j.pdpdt.2020.102112
  14. Toth K., Spencer J., Dhar D., Sagartz J., Buller R., Painter G., et al. Hexadecyloxypropyl-cidofovir, CMX001, prevents adenovirus induced mortality in a permissive, immunosuppressed animal model. Proc. Natl Acad. Sci. USA. 2008; 105(20): 7293–97. https://doi.org/10.1073/pnas.0800200105
  15. Lei C., Yang J., Hu J., Sun X. On the calculation of TCID 50 for quantitation of virus infectivity. Virol. Sin. 2021; 36(1): 141–4. https://doi.org/10.1007/s12250-020-00230-5
  16. Rodgers MA., Wilkinson E., Vallari A., McArthur C., Sthreshley L., Brennan CA., et al. Sensitive next-generation sequencing method reveals deep genetic diversity of HIV-1 in the Democratic Republic of the Congo. J. Virol. 2017; 91(6): e01841-16. https://doi.org/10.1128/JVI.01841-16
  17. Walker T., Jeffries C.L., Mansfield K.L., Johnson N. Mosquito cell lines: history, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom. Parasit. Vectors. 2014; 7: 382. https://doi.org/10.1186/1756-3305-7-382
  18. Müller G., Schlein Y. Plant tissues: the frugal diet of mosquitoes in adverse conditions. Med. Vet. Entomol. 2005; 19(4): 413–22. https://doi.org/10.1111/j.1365-2915.2005.00590.x
  19. Moreira L.A., Iturbe-Ormaetxe I., Jeffery J.A., Lu G., Pyke A.T., Hedges L.M., et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009; 139(7): 1268–78. https://doi.org/10.1016/j.cell.2009.11.042
  20. Öhlund P., Lundén H., Blomström A.L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes. 2019; 55(2): 127–37. https://doi.org/10.1007/s11262-018-01629-9
  21. Carvalho V.L., Prakoso D., Schwarz E.R., Logan T.D., Nunes B.T.D., Beachboard S.E., et al. Negevirus Piura suppresses Zika virus replication in mosquito cells. Viruses. 2024; 16(3): 350. https://doi.org/10.3390/v16030350
  22. Patterson EI., Kautz TF., Contreras-Gutierrez MA., Guzman H., Tesh RB., Hughes GL. Negeviruses reduce replication of alphaviruses during coinfection. J. Virol. 2021; 95(14): e0043321. https://doi.org/10.1128/JVI.00433-21
  23. Kent R.J., Crabtree M.B., Miller B.R. Transmission of West Nile virus by Culex quinquefasciatus say infected with Culex Flavivirus Izabal. PLoS Negl. Trop. Dis. 2010; 4(5): e671. https://doi.org/10.1371/journal.pntd.0000671
  24. Higgs S., Beaty B.J. Natural cycles of vector-borne pathogens. In: Marquardt M.C., ed. Biology of Disease Vectors. New York: Elsevier Academic Press; 2005: 167–85.
  25. Guerrero D., Cantaert T., Missé D. Aedes mosquito salivary components and their effect on the immune response to arboviruses. Front. Cell. Infect. Microbiol. 2020; 10: 407. https://doi.org/10.3389/fcimb.2020.00407

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Light microscopy (×200) of C6/36 cell culture infected with DEZV Yakutsk 2023 strain 120 hours after infection. On the left is a control of C6/36 cell culture.

下载 (269KB)
3. Fig. 2. Transmission electron microscopy of a purified virus suspension. Rounded particles with a diameter of 45‒55 nm and an electron-dense region in the central part. Contrasted with 2% uranyl acetate. The scale is indicated on images.

下载 (338KB)
4. Fig. 3. Phylodendrogram showing the maximum likelihood analysis of full-length viral sequences of DEZV and viruses of the genus Negevirus. The sequence characterized in this study is highlighted with the symbol (●). A, B, and C are the main branches of negeviruses.

下载 (498KB)
5. Appendix 1
下载 (228KB)

版权所有 © Stepanyuk M.A., Legostaev S.S., Karelina K.V., Timofeeva N.F., Emtsova K.F., Ohlopkova O.V., Taranov O.S., Ternovoi V.A., Protopopov A.V., Loktev V.B., Svyatchenko V.A., Agafonov A.P., 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».