Antiviral effect of novel purine conjugate LAS-131 against Herpes simplex virus type 1 (Herpesviridae: Alphaherpesvirinae: Simplexvirus: Human alphaherpesvirus 1) in vitro

Cover Image

Cite item

Full Text

Abstract

Introduction. Herpes simplex viruses type 1 (HSV-1) are extremely widespread throughout the world and, similar to other herpesviruses, establish lifelong persistent infection in the host. Reactivating sporadically, HSV-1 elicits recurrences in both immunocompetent and immunocompromised individuals and can cause serious diseases (blindness, encephalitis, generalized infections). The currently available antiherpetic drugs that aimed mainly at suppressing replication of viral DNA are not always effective enough, for example, due to the development of drug resistance. As we showed earlier the newly discovered compound LAS-131 exhibits the strong and highly selective inhibitory activity against HSV‑1, including strain resistant to acyclovir (selective index, SI = 63). The presence of LAS-131 at a concentration of 20 μg/ml leads to a decrease in the titer of HSV-1 (strain L2) by 4 lg in a one round of HSV-1 replication.

Material and methods. To establish the step(s) of the virus life cycle that is sensitive to the action of LAS-131, we have applied a widely used approach, that made it possible to determine how long the addition of a compound can be postponed before it loses its antiviral activity (time-of-addition assay), and to compare this indicator with the crucial time of application of inhibitors with a well-known mechanism of action (in cell culture).

Results. It has been shown for the first time that LAS-131 retains a pronounced antiviral effect when introduced into the experimental system no later than 9 hours post-infection (p.i.). However, LAS-131 does not affect the release of HSV-1 from the cell.

Discussion. Together with published data on the termination of the synthesis of viral DNA 9–12 h after the adsorption in a cell culture infected with HSV with a high multiplicity (≥1 PFU/cell), our results suggest that LAS-131 interferes the life cycle of HSV-1 during synthesis of viral DNA. Further studies of the mechanism of action are necessary to establish definitely the biological target for this compound,.

About the authors

V. L. Andronova

FSBI «National Research Center of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Author for correspondence.
Email: andronova.vl@yandex.ru

Ph.D.(Biol.), Leading Researcher of the Laboratory for Molecular Pathogenesis of Chronic Viral Infections, Institute of Virology named after D.I. Ivanovsky

123098, Moscow

Russian Federation

G. A. Galegov

FSBI «National Research Center of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Email: g.galegov@yandex.ru

 P.D., D.Sci.(Biol.), Professor, Head of the Laboratory for Molecular Pathogenesis of Chronic Viral Infections, Institute of Virology named after D.I. Ivanovsky

123098, Moscow

Russian Federation

V. V. Musiyak

FSBIS I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: vvmusiyak@ios.uran.ru

Ph.D.(Chem.), researcher of the Laboratory of Asymmetric Synthesis

620108, Ekaterinburg

Russian Federation

O. A. Vozdvizhenskaya

FSBIS I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: olgavozdv@mail.ru

Junior Researcher of the Laboratory of Asymmetric Synthesis

620108, Ekaterinburg

Ph.D., D.Sci.(Chem.), Leading researcher of the Laboratory of Asymmetric Synthesis Russian Federation

G. L. Levit

FSBIS I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: ca512@ios.uran.ru

Ph.D., D.Sci.(Chem.), Leading researcher of the Laboratory of Asymmetric Synthesis

620108, Ekaterinburg

Russian Federation

V. P. Krasnov

FSBIS I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences; FSAEI HE «Ural Federal University named after the First President of Russia B.N. Yeltsin»

Email: ca@ios.uran.ru

Ph.D., D.Sci.(Chem.), Prof., Head of the Laboratory of Asymmetric Synthesis; Researcher of the research laboratory of medical chemistry and advanced organic materials, the Institute of Chemistry and Technology

620108, Ekaterinburg

620002 Ekaterinburg

Russian Federation

References

  1. ВОЗ. Вирус простого герпеса. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/herpes-simplex-virus. (дата доступа 1 мая 2020 г.).
  2. De Clercq E., Li G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev. 2016; 29(3): 695–747. https://doi.org/10.1128/CMR.00102-15.
  3. Андронова В.Л. Современная этиотропная химиотерапия герпесвирусных инфекций: достижения, новые тенденции и перспективы. Альфагерпесвирусы (часть I). Вопросы вирусологии. 2018; 63(3): 106–14. https://doi.org/10.18821/0507-4088-2018-63-3-106-114.
  4. Коровина A.H., Гуськова А.А., Скоблов М.Ю., Андронова В.Л., Галегов Г.А., Кочетков С.Н. и др. Анализ мутаций в генах ДНК-полимераз и тимидинкиназ клинических изолятов вируса простого герпеса, резистентных к антигерпетическим препаратам. Молекулярная биология. 2010; 44(3): 488–96. https://doi.org/10.1134/s0026893310030192.
  5. Мусияк В.В., Галегов Г.А., Андронова В.Л., Краснов В.П., Левит Г.Л., Груздев Д.А. и др. (3S)-4-[6-(пурин-6-иламино) гексаноил]-3,4-дигидро-3-метил-7,8-дифтор-2Н-[1,4]-бензоксазин и (3R)-4-[6-(пурин-6-иламино)гексаноил]-3,4-дигидро-3-метил-7,8-дифтор-2Н-[1,4]бензоксазин, обладающие противовирусной активностью. Патент РФ №2644351; 2018.
  6. Krasnov V.P., Musiyak V.V., Vozdvizhenskaya O.A., Galegov G.A., Andronova V.L., Gruzdev D.A.б et al. N-[ω-(Purin-6-yl)aminoalkanoyl] derivatives of chiral heterocyclic amines as promising anti-herpesvirus agents. Eur. J. Org. Chem. 2019; 2019: 4811–21. https://doi.org/10.1002/ejoc.201900727.
  7. Sarisky R.T., Nguyen T.T., Duffy K.E., Wittrock R.J., Leary J.J. Difference in incidence of spontaneous mutations between herpes simplex virus types 1 and 2. Antimicrob. Agents Chemother. 2000; 44(6): 1524–9. https://doi.org/10.1128/aac.44.6.1524-1529.2000.
  8. MacLean C.A. HSV entry and spread. In: Brown S.M., MacLean A.R., eds. Herpes Simplex Virus Protocols. Totowa, New Jersey: Humana Press; 1998: 9–18.
  9. Гланц С. Медико-биологическая статистика. Пер. с англ. М.: Практика; 1999.
  10. Aranda-Anzaldo A. Evidence for an altered kinetics of DNA excision-repair in cells infected by herpes simplex virus type 1. Acta Virol. 1992; 36(5): 417–27. PMID: 1364017.
  11. Dremela S.E., DeLuca N.A. Genome replication affects transcription factor binding mediating the cascade of herpes simplex virus transcription. Proc. Natl. Acad. Sci. USA. 2019; 116(9): 3734–9. https://doi.org/10.1073/pnas.1818463116.
  12. Crumpacker C.S. Mechanism of action of Foscarnet against viral polymerases. Am. J. Med. 1992; 92(2A): 3S-7S. https://doi.org/10.1016/0002-9343(92)90329-a.
  13. Callegaro S., Perrone R., Scalabrin M., Doria F., Palù G., Richter S.N. A core extended naphtalene diimide G-quadruplex ligand potently inhibits herpes simplex virus 1 replication. Sci. Rep. 2017; 7(1): 2341. https://doi.org/10.1038/s41598-017-02667-3.
  14. Song S., Qiu M., Chu Y., Chen D., Wang X., Su A., et al. Downregulation of cellular c‑Jun N-terminal protein kinase and NF- κB activation by berberine may result in inhibition of herpes simplex virus replication. Antimicrob. Agents Chemother. 2014; 58(9): 5068–78. https://doi.org/10.1128/AAC.02427-14.
  15. Elion G.B. Mechanism of action and selectivity of acyclovir. Am. J. Med. 1982; 73(1A): 7–13. https://doi.org/10.1016/0002-9343(82)90055-9.
  16. Stengel G., Kuchta R.D. Coordinated leading and lagging strand DNA synthesis by using the Herpes Simplex Virus 1 replication complex and minicircle DNA templates. J. Virol. 2011; 85(2):957–67. https://doi.org/10.1128/JVI.01688-10.
  17. Loret S., Guay G., Lippe R. Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J. Virol. 2008; 82(17): 8605–18. https://doi.org/10.1128/JVI.00904-08.
  18. Weller S.K., Coen D.M. Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harbor Perspect. Biol. 2012; 4(9): a013011. https://doi.org/10.1101/cshperspect.a013011.
  19. Heming J.D., Conway J.F., Homa F.L. Herpesvirus capsid assembly and DNA packaging. Adv. Anat. Embryol. Cell Biol. 2017; 223: 119–42. https://doi.org/10.1007/978-3-319-53168-7_6.

Copyright (c) 2021 Andronova V.L., Galegov G.A., Musiyak V.V., Vozdvizhenskaya O.A., Levit G.L., Krasnov V.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies