Precision-cut Lung Slices Cultivation: New Approaches to Lung Development, Functioning and Pathogenesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Precision-cut lung slices (PCLS) is a modern approach used to study inter- and intracellular mechanisms in lungs ex vivo, with minimal disruption to the overall cellular architecture of the tissue. The PCLS method has both advantages and disadvantages in comparison with other methods of studying lung cells. This review focused on contemporary research in lung cell biology, using the PCLS method. The objective is to emphasize new possibilities and potential applications of this method for studying the respiratory system under both normal and pathological conditions.

About the authors

A. A Volozhinskaia

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: volozhinskayaalexsandra@mail.ru
ORCID iD: 0009-0008-3038-9172
Moscow, Russian Federation

I. A Govorova

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: ischenko.i.a@gmail.com
ORCID iD: 0000-0001-5107-0621
Moscow, Russian Federation

Y. A Novikova

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: yula1308@mail.ru
ORCID iD: 0000-0003-3744-9111
Moscow, Russian Federation

E. A Vorotelyak

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: vorotelyak@idbras.ru
ORCID iD: 0000-0001-5405-0212
Moscow, Russian Federation

References

  1. Ahmed D.W., Tan M.L., Liu Y., et al. Local photocrosslinking of native tissue matrix regulates lung epithelial cell mechanosensing and function. Nat Mater. 2025; 24(11): 1812–25.
  2. Akram K.M., Yates L.L., Mongey R., et al. Live imaging of alveologenesis in precision-cut lung slices reveals dynamic epithelial cell behaviour. Nat Commun. 2019; 10(1): 1178.
  3. Alsafadi H.N., Staab-Weijnitz C.A., Lehmann M., et al. An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices. Am J Physiol Lung Cell Mol Physiol. 2017; 312(6): L896–L902.
  4. Alsafadi H.N., Uhl F.E., Pineda R.H., et al. Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery. Am J Respir Cell Mol Biol. 2020; 62(6): 681–91.
  5. Azari F., Kennedy G.T., Chang A., et al. Molecular Imaging in Precision-Cut Non-Small Cell Lung Cancer Slices. Ann Thorac Surg. 2024; 117(2): 458–65.
  6. Bankole E., Wong C.W., Kim S., et al. A human PCLS model of lung injury and repair for discovery and pharmaceutical research. Respir Res. 2025; 26: 237.
  7. Blomberg R., Sompel K., Hauer C., et al. Hydrogel-embedded precision-cut lung slices model lung cancer premalignancy ex vivo. Adv Healthc Mater. 2024; 13(4): 230–46.
  8. Boyd M.R., Statham C.N., Longo N.S. The pulmonary clara cell as a target for toxic chemicals requiring metabolic activation; studies with carbon tetrachloride. The Journal of Pharmacology and Experimental Therapeutics. 1980; 212(1): 109–14.
  9. Brügger M., Machahua C., Zumkehr T., et al. Aging shapes infection profiles of influenza A virus and SARS-CoV 2 in human precision-cut lung slices. Respir Res. 2025; 26: 112.
  10. Cedilak M., Belamarić D., Ognjenović A., et al. Viability and Epithelial Cell Dynamics in Human Precision-cut Lung Slices During Prolonged Ex Vivo Incubation. Am J Respir Crit Care Med. 2025; 211: 4688.
  11. Chang S.Y., Chang W.H., Yang D.C., et al. Autologous precision-cut lung slice co-culture models for studying macrophage-driven fibrosis. Front Physiol. 2025; 16: 1526787.
  12. Chen C.H., Chaudhary S.K., Chang W.H., et al. Repurposing flavopiridol as an inhaled therapeutic for pulmonary fibrosis. Eur J Pharmacol. 2025; 1005: 178058.
  13. Cheong S.S., Luis T.C., Hind M., et al. A Novel Method for Floxed Gene Manipulation Using TAT-Cre Recombinase in Ex Vivo Precision-Cut Lung Slices (PCLS). Bio Protoc. 2024; 14(8): 4980.
  14. Cheong S.S., Luis T.C., Stewart M., et al. A method for TAT-Cre recombinase-mediated floxed allele modification in ex vivo tissue slices. Dis Model Mech. 2023; 16(11): dmm050267.
  15. Croft C.L., Futch H.S., Moore B.D., et al. Organotypic brain slice cultures to model neurodegenerative proteinopathies. Mol Neurodegener. 2019; 14(1): 45.
  16. Crue T., Lee G.Y., Peng J.Y.-C. et al. Single cell RNA-sequencing of human precision-cut lung slices: A novel approach to study the effect of vaping and viral infection on lung health. Innate Immun. 2023; 29(5): 61–70.
  17. de Vries R.D., Rennick L.J., Duprex W.P., et al. Paramyxovirus Infections in Ex Vivo Lung Slice Cultures of Different Host Species. Methods Protoc. 2018; 1(2): 12.
  18. Dewyse L., De Smet V., Verhulst S., et al. Improved Precision-Cut Liver Slice Cultures for Testing Drug-Induced Liver Fibrosis. Front Med (Lausanne). 2022; 9: 857611.
  19. Fischer C., Milting H., Fein E., et al. Long-term functional and structural preservation of precision-cut human myocardium under continuous electromechanical stimulation in vitro. Nat Commun. 2019; 10(1): 117.
  20. Freeman B.A., O’Neil J.J. Tissue slices in the study of lung metabolism and toxicology. Environ Health Perspect. 1984; 56: 51–60.
  21. Gerhards N.M., Cornelissen J.B.W.J., Van Keulen L.J.M., et al. Predictive Value of Precision-Cut Lung Slices for the Susceptibility of Three Animal Species for SARS-CoV 2 and Validation in a Refined Hamster Model. Pathogens. 2021; 10(7): 824.
  22. Groff B.D., Kinman A.W.L., Woodroof J.F., et al. Immunofluorescence staining of live lymph node tissue slices. J Immunol Methods. 2019; 464: 119–25.
  23. Habibie H., Putri K.S.S., Boorsma C.E., et al. Osteoprotegerin Is Elevated in Pulmonary Fibrosis and Associates with Idiopathic Pulmonary Fibrosis Progression: A Pilot Study. Respiration. 2025; 1–14.
  24. Hess A., Wang-Lauenstein L., Braun A., et al. Prevalidation of the ex-vivo model PCLS for prediction of respiratory toxicity. Toxicol In Vitro. 2016; 32: 347–61.
  25. Hesse C., Mang S., Hoymann H.G., et al. Induction of pro-fibrotic biomarkers in precision-cut lung slices (PCLS). Eur Respir J. 2016; 48(suppl 60): OA479.
  26. Hoffmann M., Hofmann-Winkler H., Smith J.C., et al. Camostat mesylate inhibits SARS-CoV 2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine. 2021; 65: 103255.
  27. Kolbe U., Yi B., Poth T., et al. Early Cytokine Induction Upon Pseudomonas aeruginosa Infection in Murine Precision Cut Lung Slices Depends on Sensing of Bacterial Viability. Front Immunol. 2020; 11: 598636.
  28. Kollareth D.J.M., Sharma A.K. Precision cut lung slices: an innovative tool for lung transplant research. Front Immunol. 2024; 15: 1504421.
  29. Lam M., Lamanna E., Organ L., et al. Perspectives on precision cut lung slices-powerful tools for investigation of mechanisms and therapeutic targets in lung diseases. Front Pharmacol. 2023; 14: 1162889.
  30. Lehmann M., Buhl L., Alsafadi H.N., et al. Differential effects of Nintedanib and Pirfenidone on lung alveolar epithelial cell function in ex vivo murine and human lung tissue cultures of pulmonary fibrosis. Respir Res. 2018; 19(1): 175.
  31. Liu G., Betts C., Cunoosamy D.M., Åberg P.M., et al. Use of precision cut lung slices as a translational model for the study of lung biology. Respir Res. 2019; 20(1): 162.
  32. Liu G., Särén L., Douglasson H., et al. Precision cut lung slices: an ex vivo model for assessing the impact of immunomodulatory therapeutics on lung immune responses. Arch Toxicol. 2021; 95(8): 2871–7.
  33. Liu Y., Wu P., Wang Y., et al. Application of Precision-Cut Lung Slices as an In Vitro Model for Research of Inflammatory Respiratory Diseases. Bioengineering (Basel). 2022; 9(12): 767.
  34. Lyons-Cohen M.R., Nakano H., Thomas S.Y., et al. Imaging precision cut lung slices to visualize leukocyte localization and trafficking. Methods Mol Biol. 2018; 1799: 237–46.
  35. Lyons-Cohen M.R., Thomas S.Y., Cook D.N., et al. Precision-cut Mouse Lung Slices to Visualize Live Pulmonary Dendritic Cells. J Vis Exp. 2017; (122): 55465.
  36. Maarsingh H., Bidan C.M., Brook B.S., et al. Small airway hyperresponsiveness in COPD: relationship between structure and function in lung slices. Am J Physiol Lung Cell Mol Physiol. 2019; 316(11–12): L537–L546.
  37. Machahua C., Marti T.M., Dorn P., et al. Fibrosis in PCLS: comparing TGF-β and fibrotic cocktail. Respir Res. 2025; 26(1): 44.
  38. Mansouri S., Karger A., Ruppert C., et al. Living human lung slices for ex vivo modelling of lung cancer. JCI Insight. 2025; 10(17): e190703.
  39. Michalaki C., Dean C., Johansson C. The Use of Precision‐Cut Lung Slices for Studying Innate Immunity to Viral Infections. Curr Protoc. 2022; 2(8): e505.
  40. Mesaki K., Yamamoto H., Juvet S., et al. CRISPR-Cas Genome Editing in Ex Vivo Human Lungs to Rewire the Translational Path of Genome-Targeting Therapeutics. Hum Gene Ther. 2024; 35(11–12): 374–87.
  41. Miura Y., Ohkubo H., Nakano A., et al. Pathophysiological conditions induced by SARS-CoV 2 infection reduce ACE2 expression in the lung. Front Immunol. 2022; 13: 1028613.
  42. Mondoñedo J.R., Bartolák-Suki E., Bou Jawde S., et al. A High-Throughput System for Cyclic Stretching of Precision-Cut Lung Slices During Acute Cigarette Smoke Extract Exposure. Front Physiol. 2020; 11: 566.
  43. Naumann M., Hornung F., Eiserloh S., et al. Investigating alveolar macrophages in an human ex vivo precision-cut lung slice model of SARS-CoV 2 infection using Raman spectroscopy-A case study. Clin Transl Med. 2025; 15(9): e70453.
  44. Neuhaus V., Schaudien D., Golovina T., et al. Assessment of long-term cultivated human precision-cut lung slices as an ex vivo system for evaluation of chronic cytotoxicity and functionality. J Occup Med Toxicol. 2017; 12: 13.
  45. Niehof M., Hildebrandt T., Danov O., et al. RNA isolation from precision-cut lung slices (PCLS) from different species. BMC Res Notes. 2017; 10: 121.
  46. Nußbaum S.M., Krabbe J., Böll S., et al. Functional changes in long-term incubated rat precision-cut lung slices. Respir Res. 2022; 23(1): 261.
  47. Obernolte H., Konzok S., Ritter D., et al. Cigarette smoke condensate and cigarette smoke induce cytotoxicity and inflammation in human and rodent Precision-Cut Lung Slices of different species. Pneumologie. 2015; 69(07).
  48. Obernolte H., Niehof M., Braubach P., et al. Cigarette smoke alters inflammatory genes and the extracellular matrix — investigations on viable sections of peripheral human lungs. Cell Tissue Res. 2022; 387(2): 249–60.
  49. Pham B.T., van Haaften W.T., Oosterhuis D., et al. Precision-cut rat, mouse, and human intestinal slices as novel models for the early-onset of intestinal fibrosis. Physiol Rep. 2015; 3(3): e12323.
  50. Poosti F., Pham B.T., Oosterhuis D., et al. Precision-cut kidney slices (PCKS) to study development of renal fibrosis and efficacy of drug targeting ex vivo. Dis Model Mech. 2015; 8(10): 1227–36.
  51. Preuß E.B., Schubert S., Werlein C., et al. The Challenge of Long-Term Cultivation of Human Precision-Cut Lung Slices. Am J Pathol. 2022; 192(2): 239–53.
  52. Sanderson M.J. Exploring lung physiology in health and disease with lung slices. Pulm Pharmacol Ther. 2011; 24(5): 452–65.
  53. Sompel K., Smith A.J., Hauer C., et al. Precision cut lung slices as a preclinical model for non-small cell lung cancer chemoprevention. Cancer Prev Res (Phila). 2023; 16(5): 247–58.
  54. Temann A., Golovina T., Neuhaus V., et al. Evaluation of inflammatory and immune responses in long-term cultured human precision-cut lung slices. Hum Vaccin Immunother. 2016; 13(2): 351–8.
  55. Tigges J., Eggerbauer F., Worek F., et al. Optimization of long-term cold storage of rat precision-cut lung slices with a tissue preservation solution. Am J Physiol Lung Cell Mol Physiol. 2021; 321(6): L1023–L35.
  56. Viana F., O’Kane C.M., Schroeder G.N., et al. Precision-cut lung slices: A powerful ex vivo model to investigate respiratory infectious diseases. Mol Microbiol. 2022; 117(3): 578–88.
  57. Wally A., Lagowala A., Wilmsen K., et al. A cigarette smoke exposure model using lung tissues to study emphysema, in: Lung and Airway Developmental Biology. Presented at the ERS International Congress; 2023.
  58. Yadav P., Ortega J.G., Dabral P., et al. Myeloid-mesenchymal crosstalk drives ARG1-dependent profibrotic metabolism via ornithine in lung fibrosis. The Journal of Clinical Investigation. 2025; 135(21): e188734.
  59. Zimniak M., Kirschner L., Hilpert H., et al. The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV 2 in human lung tissue. Sci Rep. 2021; 11(1): 5890.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).