Endoplasmic Reiculum Stress Inducers Suppress Motility and Lead to Shape Change of Normal and Tumor Human Cells in vitro

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Endoplasmic reticulum (ER) stress and the resulting unfolded protein response (UPR) play an important role in functioning and progression of many types of tumors. In particular, ER stress can both stimulate and suppress cell motility, invasiveness, and metastasis. Contribution of ER stress induced by varying mechanisms to changes of cell motility parameters of normal and tumor cells is poorly understood. In this study, weinvestigated the different effects of ER stress inducers bortezomib, tunicamycin, and dithiothreitol (DTT) on cell motility, area, and shape of normal and tumor cells of epidermal origin, HaCaT and A431, respectively, in the presence of the agent and after its removal from the culture medium. We showed that HaCaT cell motility was suppressed by bortezomib, tunicamycin, and DTT and was restored after removal of the agent. Effects of bortezomib and DTT are accompanied by a reversible decrease in area and an increase in the form factor: HaCaT cells become rounded, with fewer protrusions. The effect of bortezomib on A431 cells leads to an irreversible decrease in motility without significant changes in area or shape; the decrease in motility after incubation of cells with tunicamycin and DTT, on the contrary, is reversible. In conclusion, ER stress inducers suppress cell motility of immortalized HaCaT keratinocytes and A431 epidermoid carcinoma cells regardless of the induction mechanism. Observed changes in cell area and shape, as well as the reversibility of these phenomena, depend on the cell type and the induction mechanism.

About the authors

I. I. Zakharov

Lomonosov Moscow State University, Faculty of Biology; Shenzhen MSU-BIT University

Email: galina22@mail.ru
Moscow, Russian Federation; Shenzhen, Guangdong Province, China

P. A. Veselova

Lomonosov Moscow State University, Faculty of Biology; Institute of Biomedical Chemistry

Email: galina22@mail.ru
Moscow, Russian Federation; Moscow, Russian Federation

M. A. Savitskaya

Lomonosov Moscow State University, Faculty of Biology

Email: galina22@mail.ru
Moscow, Russian Federation

E. A. Smirnova

Lomonosov Moscow State University, Faculty of Biology; Shenzhen MSU-BIT University

Email: galina22@mail.ru
Moscow, Russian Federation; Shenzhen, Guangdong Province, China

G. E. Onishchenko

Lomonosov Moscow State University, Faculty of Biology

Email: galina22@mail.ru
Moscow, Russian Federation

References

  1. Almanza A., Carlesso A., Chintha C., et al. Endoplasmic reticulum stress signalling — from basic mechanisms to clinical applications // The FEBS journal. 2019. V. 286. № 2. P. 241–278.
  2. Banerjee D. K., Seijo Lebrón A., Baksi K. Glycotherapy: A new paradigm in breast cancer research // Biomolecules. 2022. V. 12. № 4. P. 487.
  3. Bao M., Feng Q., Zou L., et al. Endoplasmic reticulum stress promotes endometrial fibrosis through the TGFβ/SMAD pathway // Reproduction (Cambridge, England). 2023. V. 165. № 2. P. 171–182.
  4. Brabletz S., Schuhwerk H., Brabletz T., et al. Dynamic EMT: a multi-tool for tumor progression // The EMBO journal. 2021. V. 40. № 18. P. e108647.
  5. Chu H.-S., Peterson C., Chamling X., et al. Integrated stress response regulation of corneal epithelial cell motility and cytokine production // Investigative Ophthalmology & Visual Science. 2022. V. 63. № 8. P. 1.
  6. Chuang H.-H., Zhen Y.Y., Tsai Y.C., et al. FAK in cancer: from mechanisms to therapeutic strategies // International Journal of Molecular Sciences. 2022. V. 23. № 3. P. 1726.
  7. Cleland W.W. Dithiothreitol, a new protective reagent for SH groups // Biochemistry. 1964. V. 3. № 4. P. 480–482.
  8. Cole D.W., Svider P.F., Shenouda K.G., et al. Targeting the unfolded protein response in head and neck and oral cavity cancers // Experimental Cell Research. 2019. V. 382. № 1. P. 111386.
  9. Deyrieux A.F., Wilson V.G. In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line // Cytotechnology. 2007. V. 54. № 2. P. 77.
  10. Fribley A., Zeng Q., Wang C.-Y. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells // Molecular and Cellular Biology. 2004. V. 24. № 22. P. 9695–9704.
  11. Hetz C., Zhang K., Kaufman R. J. Mechanisms, regulation and functions of the unfolded protein response // Nature Reviews Molecular Cell Biology. 2020. V. 21. № 8. P. 421–438.
  12. Hou H., Ge C., Sun H., et al. Tunicamycin inhibits cell proliferation and migration in hepatocellular carcinoma through suppression of CD44s and the ERK1/2 pathway // Cancer Science. 2018. V. 109. № 4. P. 1088–1100.
  13. Jiang H., Zou J., Zhang H., et al. Unfolded protein response inducers tunicamycin and dithiothreitol promote myeloma cell differentiation mediated by XBP-1 // Clinical and Experimental Medicine. 2015. V. 15. № 1. P. 85–96.
  14. Ko B.-S., Chang T.C., Chen C.H., et al. Bortezomib suppresses focal adhesion kinase expression via interrupting nuclear factor-kappa B // Life Sciences. 2010. V. 86. № 5–6. P. 199–206.
  15. Li J., Jia L., Ma Z.-H., et al. Axl glycosylation mediates tumor cell proliferation, invasion and lymphatic metastasis in murine hepatocellular carcinoma // World Journal of Gastroenterology. 2012. V. 18. № 38. P. 5369–5376. https://doi.org/10.3748/wjg.v18.i38.536916.
  16. Liu D., Zhu H., Gong L., et al. Histone deacetylases promote ER stress induced epithelial mesenchymal transition in human lung epithelial cells // Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology. 2018. V. 46. № 5. P. 1821–1834.
  17. Lorch J.H., Thomas T.O., Schmoll H.-J. Bortezomib inhibits cell-cell adhesion and cell migration and enhances epidermal growth factor receptor inhibitor-induced cell death in squamous cell cancer // Cancer Research. 2007. V. 67. № 2. P. 727–734.
  18. Madden E., Logue S.E., Healy S.J., et al. The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance // Biology of the Cell. 2019. V. 111. № 1. P. 1–17.
  19. Mahdi A.A., Rizvi S.H.M., Parveen A. Role of endoplasmic reticulum stress and unfolded protein responses in health and diseases // Indian Journal of Clinical Biochemistry. 2016. V. 31. № 2. P. 127–137.
  20. Miettinen T. P., Caldez M. J., Kaldis P., et al. Cell size control — a mechanism for maintaining fitness and function // BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 2017. V. 39. № 9. Art. no. 1700058.
  21. Mo X.-T., Zhou W. C., Cui W. H., et al. Inositol-requiring protein 1-X-box-binding protein 1 pathway promotes epithelial-mesenchymal transition via mediating snail expression in pulmonary fibrosis // The International Journal of Biochemistry & Cell Biology. 2015. V. 65. P. 230–238.
  22. Moon K., Lee H.-G., Baek W.-K., et al. Bortezomib inhibits proliferation, migration, and TGF-β1-induced epithelial–mesenchymal transition of RPE cells // Molecular Vision. 2017. V. 23. P. 1029–1038. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757857.
  23. Moon S.Y., Kim H.S., Nho K.W. Endoplasmic reticulum stress induces epithelial-mesenchymal transition through autophagy via activation of c-Src kinase // Nephron. Experimental Nephrology. 2014. V. 126. № 3. P. 127–140.
  24. Muramatsu H., Muramatsu T. Effects of succinyl concanavalin A and tunicamycin on F9 embryonal carcinoma cells: inhibition of cell spreading: (succinyl concanavalin A/tunicamycin/embryonal carcinoma cells/glycoproteins/cell spreading) // Development, Growth & Differentiation. 1984. V. 26. № 3. P. 303–310.
  25. Nagy G., Kiraly G., Turani M., et al. Cell trivision of hyperploid cells // DNA and cell biology. 2013. V. 32. № 12. P. 676–684.
  26. Nami B., Donmez H., Kocak N. Tunicamycin-induced endoplasmic reticulum stress reduces in vitro subpopulation and invasion of CD44+/CD24-phenotype breast cancer stem cells // Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie. 2016. V. 68. № 7. P. 419–426.
  27. Obeng E. A., Carlson L. M., Gutman D. M., et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells // Blood. 2006. V. 107. № 12. P. 4907–4916.
  28. Ouyang S., Ji D., He S., et al. Endoplasmic reticulum stress as a novel target to inhibit transdifferentiation of human retinal pigment epithelial cells // Frontiers in Bioscience (Landmark Edition). 2022. V. 27. № 2. P. 38.
  29. Øvrebø J. I., Edgar B. A. Polyploidy in tissue homeostasis and regeneration // Development (Cambridge, England). 2018. V. 145. № 14. P. dev156034.
  30. Pfisterer L., Meyer R., Feldner A. Bortezomib protects from varicose-like venous remodeling // The FASEB Journal. 2014. V. 28. № 8. P. 3518–3527.
  31. Rapoport T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes // Nature. 2007. V. 450. № 7170. P. 663–669.
  32. Ren B., Wang Y., Wang H. Comparative proteomics reveals the neurotoxicity mechanism of ER stressors tunicamycin and dithiothreitol // NeuroToxicology. 2018. V. 68. P. 25–37.
  33. Schlaepfer D. D., Mitra S. K., Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase // Biochimica Et Biophysica Acta. 2004. V. 1692. № 2–3. P. 77–102.
  34. Shelton W. T., Thomas S. M., Alexander H. R., et al. Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion // Scientific Reports. 2021. V. 11. № 1. P. 13295.
  35. Shi C., Zhang G.-B., Yin S.-W. Effect of bortezomib on migration and invasion in cervical carcinoma HeLa cell // Asian Pacific Journal of Tropical Medicine. 2015. V. 8. № 6. P. 485–488.
  36. Shimizu N., Kondo I., Gamou S., et al. Genetic analysis of hyperproduction of epidermal growth factor receptors in human epidermoid carcinoma A431 cells // Somatic Cell and Molecular Genetics. 1984. V. 10. № 1. P. 45–53.
  37. Shin H.-S., Ryu E.S., Oh E.S., et al. Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells // Laboratory Investigation; a Journal of Technical Methods and Pathology. 2015. V. 95. № 10. P. 1157–1173.
  38. Shinjo S., Mizotani Y., Tashiro E., et al. Comparative analysis of the expression patterns of UPR-target genes caused by UPR-inducing compounds // Bioscience, Biotechnology, and Biochemistry. 2013. V. 77. № 4. P. 729–735.
  39. Stirling D.R., Swain-Bowden M.J., Lucas A.M., et al. CellProfiler 4: improvements in speed, utility and usability // BMC Bioinformatics. 2021. V. 22. № 1. P. 433.
  40. Tan C. R. C., Abdul-Majeed S., Cael B., et al. Clinical pharmacokinetics and pharmacodynamics of bortezomib // Clinical Pharmacokinetics. 2019. V. 58. № 2. P. 157–168.
  41. Tanjore H., Cheng D. S., Degryse A. L., et al. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress // The Journal of Biological Chemistry. 2011. V. 286. № 35. P. 30972–30980.
  42. Vildanova M., Vishnyakova P., Saidova A., et al. Gibberellic acid initiates ER stress and activation of differentiation in cultured human immortalized keratinocytes HaCaT and epidermoid carcinoma cells A431 // Pharmaceutics. 2021. V. 13. № 11. P. 1813.
  43. Wang D., Qiu Y., Fan J., et al. Upregulation of C/EBP homologous protein induced by ER stress mediates epithelial to myofibroblast transformation in ADTKD-UMOD // International Journal of Medical Sciences. 2022. V. 19. № 2.
  44. Wilson V. G. Growth and differentiation of HaCaT keratinocytes / под ред. K. Turksen, New York, NY: Springer, 2014. P. 33–41.
  45. Yoo Y. S., Han H. G., Jeon Y. J. Unfolded protein response of the endoplasmic reticulum in tumor progression and immunogenicity // Oxidative Medicine and Cellular Longevity. 2017. V. 2017. P. 1–18.
  46. Zhong Q., Zhou B., Ann D. K., et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein // American Journal of Respiratory Cell and Molecular Biology. 2011. V. 45. № 3. P. 498–509.
  47. Zhou S., Yang J., Wang M., et al. Endoplasmic reticulum stress regulates epithelial-mesenchymal transition in human lens epithelial cells // Molecular Medicine Reports. 2020. V. 21. № 1. P. 173–180.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).