The Study of Placozoa through the Ages: From Morphology to Functional Genomics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Placozoa (Trichoplax) — highly simplified free-living metazoans originating during the peak of marine biodiversity diversification. Placozoans are morphologically and functionally asymmetric organisms lacking muscles, a nervous system, and clear body symmetry. Despite their structural simplicity, they exhibit complex behaviors, including social interactions. Research on Placozoa and the establishment of this phylum has a long history, whichwe present here as a chronological timeline spanning from early studies of their biology and morphology to modern genomic and transcriptomic analyses. This review synthesizes recent advances in Placozoan biology and critically evaluates accumulated data. Based on this analysis, weidentify the most promising future research directions for this enigmatic group.

About the authors

D. Y. Romanova

Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, RAS

Email: darjaromanova@gmail.com
Butlerova 5a, 117485 Moscow, Russian Federation

V. S. Kololeeva

Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, RAS

Email: darjaromanova@gmail.com
Butlerova 5a, 117485 Moscow, Russian Federation

M. A. Nikitin

Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, RAS; Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University

Email: darjaromanova@gmail.com
Butlerova 5a, 117485 Moscow, Russian Federation; Leninskie Gory 1/40, 119992 Moscow, Russian Federation

References

  1. Alyoshin V. V., Vladychenskaya N. S., Kedrova O. S., Milyutina I. A., Petrov N. B. Comparison of 18S ribosomal RNA genes in invertebrate phylogeny. Molecular Biology. 1995. V. 29. No. 6. P. 1408–1426. (In Russ.)
  2. Vallejo-Roman K. M., Bobrova V. K., Troitskiy A. V., Tsetlin A. B., Okshtein I. L. New data on Trichoplax: the nucleotide sequence of 5S rRNA. Doklady SSSR Akademii Nauk — Proceedings of the USSR Academy of Sciences. 1990. V. 311. No. 2. P. 500–503. (In Russ.)
  3. Vladychenskaya N. S., Kedrova O. S., Milutina I. A., Okshtein I. L., Alyoshin V. V., Petrov N. B. The position of the Placozoa type in the system of multicellular animals based on the results of comparing the sequences of the 18S rRNA gene. Doklady Rossiiskoi Akademii Nauk — Proceedings of the Academy of Sciences. 1995. V. 344. No. 1. P. 1–3. (In Russ.)
  4. Dogel V. A. Zoology of invertebrates. Moscow: Higher School, 1981. 606 p. (In Russ.)
  5. Ivanov A. V. Trichoplax adhaerens — a phagocytelle-like animal. Zool. Journal. 1973. V. 52. No. 8. P. 1117–1130. (In Russ.)
  6. Ivanov D. L., Malakhov V. V., Tsetlin A. B. A new discovery of a primitive multicellular organism Trichoplax sp. Zool. Journal. 1980. V. 59. No. 11. P. 1735–1738. (In Russ.)
  7. Ivanov D. L., Malakhov V. V., Tsetlin A. B. Fine morphology and ultrastructure of a primitive multicellular organism Trichoplax sp. 1. Morphology of adult individuals and vagrants according to scanning electron microscopy data. Zool. Journal. 1980. V. 59. No. 12. P. 1765–1767. (In Russ.)
  8. Ivanov D. L., Malakhov V. V., Tsetlin A. B. Fine morphology and ultrastructure of a primitive multicellular organism Trichoplax sp. 2. Ultrastructure of adult individuals. Zool. Journal. 1982. V. 59. No. 12. P. 1768–1771. (In Russ.)
  9. Malakhov V. V. Mysterious groups of marine invertebrates. Trichoplax, orthonectides, dicyemides, sponges. Moscow, 1990. 143 p. (In Russ.)
  10. Malakhov V. V. The origin of bilaterally symmetrical animals (Bilateria). Journal of General Biology. 2004. V. 65. No. 5. P. 371–388. (In Russ.)
  11. Malakhov V. V., Nezlin L. P. Trichoplax — a living model of the origin of multicellular organisms. Nature. 1983. No. 3. P. 32–41. (In Russ.)
  12. Mechnikov I. I. Embryological studies on jellyfish. In: Selected biological works. Moscow: Academy of Sciences of the USSR, 1950. P. 271–472. (In Russ.)
  13. Mechnikov I. I. Comparative embryological studies. III. About the gastrula of some multicellular animals. In: Academic collection of works. V. 3. Moscow: Gosizdat med. lit., 1955. P. 104–124. (In Russ.)
  14. Okstein I. L. Towards the biology of Trichoplax sp. (Placozoa). Zool. Journal. 1987. V. 66. No. 3. P. 339. (In Russ.)
  15. Okstein I. L. A new method of cultivation of Trichoplax sp. (Placozoa). Zool. Journal. 1988. V. 67. No. 6. P. 923–926. (In Russ.)
  16. Seravin, L. N., Karpenko, A. A. Features of orientation of invertebrates in three-dimensional space. Zool. Journal. V. 66. No. 9. P. 1285–1292. (In Russ.)
  17. Seravin, L. N., Gerasimova, Z. P. Features of the fine structure of the trichoplax Trichoplax adhaerens feeding on dense plant substrates. Cytology. 1998. V. 30. P. 1188–1193. (In Russ.)
  18. Seravin, L. N., Gudkov, A. V. Amoeboid properties of cells in the process of early morphogenesis and the nature of a possible protozoal ancestor of Metazoa. Journal of Society. biol. 2005a. V. 66. No. 3. P. 212–223. (In Russ.)
  19. Seravin, L. N., Gudkov, A. V. Trichoplax adhaerens (type Placozoa) — one of the most primitive multicellular animals. St. Petersburg: TESSA, 2005. 69 p. (In Russ.)
  20. Sharova I. H. Zoology of invertebrates. Moscow: Vlados, 2002. 594 p. (In Russ.)
  21. Armon S., Bull M. S., Aranda-Diaz A., Prakash M. Ultrafast epithelial contractions provide insights into contraction speed limits and tissue integrity. Proceedings of the National Academy of Sciences. 2018. V. 115. No. 44. P. E10333–E10341.
  22. Birstein V. J. On the karyotype of Trichoplax sp. (Placozoa). Biol. Zent. Bl. 1989. No. 108. P. 63–67.
  23. Bonik K., Grasshoff M., Gutmann W. F. Die Evolution der Tierkonstruktionen. III. Vom Gallertoid zur Coelomhydraulik. Natur und Museum. 1976. V. 106. No. 6. P. 178–188.
  24. Collins A. G. Evaluating multiple alternative hypotheses for the origin of Bilateria: An analysis of 18S rRNA molecular evidence. Proceedings of the National Academy of Sciences. 1998. V. 95. No. 26. P. 15458–15463.
  25. Bztschli O. Bemerkungen zur Gastrea-Theorie. Morphol. Jahrb. 1884. No. 9. P. 415–427.
  26. Eitel M., Francis W. R., Varoqueaux F., et al. Comparative genomics and the nature of placozoan species. PLoS Biology. 2018. V. 16. No. 7. P. e2005359.
  27. Eitel M., Osigus H. J., DeSalle R., Schierwater B. Global diversity of the Placozoa. PLoS One. 2013. V. 8. No. 4. P. e57131.
  28. Eitel M., Guidi L., Hadrys H., Balsamo M., Schierwater B. New insights into placozoan sexual reproduction and development. PLoS One. 2011. V. 6. No. 5. P. e19639.
  29. Eitel, M., Schierwater, B. The phylogeography of the Placozoa suggests a taxon-rich phylum in tropical and subtropical waters. Molecular Ecology. 2010. V. 19. No. 11. P. 2315–2327.
  30. Elkhatib, W., Yanez-Guerra, L. A., Mayorova, T. D., et al. Function and phylogeny support the independent evolution of an ASIC-like Deg/ENaC channel in the Placozoa. Communications Biology. 2023. V. 6. No. 1. P. 951.
  31. Elkhatib, W., Smith, C. L., Senatore, A. A Na+ leak channel cloned from Trichoplax adhaerens extends extracellular pH and Ca2+ sensing for the DEG/ENaC family close to the base of Metazoa. Journal of Biological Chemistry. 2019. V. 294. No. 44. P. 16320–16336.
  32. Fortunato, A., Aktipis, A. Social feeding behavior of Trichoplax adhaerens. Frontiers in Ecology and Evolution. 2019.
  33. Garbowski, T. Morphologenetische Studien als Beitrag zur Methodologie zoologischer Forschung. Jena, 1903. P. 189.
  34. Graff, L. Die Organization der Turbellaria Acoela. Leipzig: W. Engelmann, 1891. P. 90.
  35. Grasshoff, M. Die Evolution der Tiere in neuer Darstellung. Natur und Museum, 1993. V. 123. No. 7. P. 204–215.
  36. Grell, K.G., Ruthmann, A. Placozoa. In: Microscopic Anatomy of Invertebrates. F.W. Harrison and J.A. Westfall (eds). New York: Wiley-Liss, 1991. P. 13–27.
  37. Grell K. G., Benwitz G. Elektronenmikroskopische Beobachtungen über das Wachstum der Eizelle und die Bildung der "Befruchtungsmembran" von Trichoplax adhaerens F. E. Schulze (Placozoa). Z. Morph. Tiere. 1974. No. 79. P. 295–310.
  38. Grell K. G. Trichoplax adhaerens F. E. Schulze und die Entstehung der Metazoen. Naturwiss. Rundschau. 1971. No. 24. P. 160–161.
  39. Grell K. G. Eibildung und Furchung von Trichoplax adhaerens F. E. Schulze (Placozoa). Z. Morph. Tiere. 1972. No. 73. P. 297–314.
  40. Grell K. G. Trichoplax adhaerens F. E. Schulze und die Entstehung der Metazoen. Naturwiss. Rundschau. 1971. No. 24. P. 160–161.
  41. Gruber-Vodicka H. R., Leisch N., Kleiner M., et al. Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2. Nature Microbiology. 2019. V. 4. No. 9. P. 1465–1474.
  42. Guidi L., Eitel M., Cesarini E., Schierwater B., Balsamo M. Ultrastructural analyses support different morphological lineages in the phylum Placozoa Grell, 1971. Journal of Morphology. 2011. V. 272. No. 3. P. 371–378.
  43. Haeckel E. Die Gastrea & Theorie die phylogenetische Classification des Tierreichs und die Homologie der Keimblatter. Jen. Z. Naturw. 1874. No. 8. P. 1–55.
  44. Halanych K. M. The new view of animal phylogeny. Annu. Rev. Ecol. Evol. Syst. 2004. No. 35. P. 229–256.
  45. Heyland, A., Croll, R., Goodall, S., Kranyak, J., Wyeth, R. Trichoplax adhaerens, an enigmatic basal metazoan with potential. Developmental Biology of the Sea Urchin and Other Marine Invertebrates: Methods and Protocols. 2014. P. 45–61.
  46. Jackson, A. M., Buss, L. W. Shiny spheres of placozoans (Trichoplax) function in anti-predator defense. Invertebrate Biology. 2009. V. 128. No. 3. P. 205–212.
  47. Kamm K., Osigus H. J., Stadler P. F., DeSalle R., Schierwater B. Genome analyses of a placozoan rickettsial endosymbiont show a combination of mutualistic and parasitic traits. Scientific Reports. 2019. V. 9. No. 1. P. 17561.
  48. Kamm K., Osigus H. J., Stadler P. F., DeSalle R., Schierwater B. Trichoplax genomes reveal profound admixture and suggest stable wild populations without bisexual reproduction. Scientific Reports. 2018. V. 8. No. 1. P. 11168.
  49. Kobayashi M., Takahashi M., Wada H., Satoh N. Molecular phylogeny inferred from sequences of small subunit ribosomal DNA supports the monophyly of the Metazoa. Zoological Science. 1993. V. 10. No. 5. P. 827–833.
  50. Krumbach T. Trichoplax, die umgewandelte Planula einer Hydromeduse. Zool. Anz. 1907. No. 31. P. 45–454.
  51. Kuhl W., Kuhl G. Bewegungsphysiologische Untersuchungen an Trichoplax adhaerens F. E. Schulze. Zool. Anz. Suppl. 1963. No. 26. P. 460–469.
  52. Kuhl W., Kuhl G. Untersuchungen uber das Bewegungsverhalten von Trichoplax adhaerens F.E. Schulze (Zeittransformation: Zeitranffung). Z. Morph. Okol. Tiere. 1966. No. 5. P. 417–435.
  53. Lankester E.R. Notes on the embryology and classification of the animal kingdom: Comprising a revision of speculations relative to the origin and significance of the germ-layers. Journal of Cell Science. 1877. V. 2. No. 68. P. 399–454.
  54. Leys S.P., Eerkes-Medrano D. Gastrulation in calcareous sponges: In search of Haeckel's gastraea. Integrative and comparative biology. 2005. V. 45. No. 2. P. 342–351.
  55. Li Y., Sun C., Romanova D.Y., Wu D.O., Fang R., Moroz L.L. Analysis and Visualization of Single-Cell Sequencing Data with Scanpy and MetaCell: A Tutorial. Ctenophores: Methods and Protocols. 2024. P. 383–445.
  56. Maruyama Y. K. Occurrence in the field of a long-term, year-round, stable population of placozoans. The Biological Bulletin. 2004. V. 206. No. 1. P. 55–60.
  57. Mayorova T. D., Smith C. L., Hammar K., et al. Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses. PLoS One. 2018. V. 13. No. 1. P. e0190905.
  58. Mayorova T. D., Hammar K., Winters C. A., Reese T. S., Smith C. L. The ventral epithelium of Trichoplax adhaerens deploys in distinct patterns cells that secrete digestive enzymes, mucus or diverse neuropeptides. Biology Open. 2019.
  59. Metschnikoff, E. Embriologische Studien an Medusen. Ein Beitrag zur Genealogie der Primitive-Organe. Wien: Alfred Hölder, 1886. 159 p.
  60. Miller, D. J., Ball, E. E. Animal evolution: the enigmatic phylum placozoa revisited. Current Biology, 2005. V. 15. No. 1. P. 26–28.
  61. Miller, D. J., Ball, E. E. Cryptic complexity captured: the Nematostella genome reveals its secrets. Trends in Genetics, V. 24. No. 1. P. 1–4.
  62. Miyazawa H., Yoshida M. A., Tsuneki K., Furuya H. Mitochondrial genome of a Japanese placozoan. Zoological Science. 2012. V. 29. No. 4. P. 223–228.
  63. Moroz L. L., Kocot K. M., Citarella M. R., et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014. V. 510. No. 7503. P. 109–114.
  64. Moroz L. L., Sohn D., Romanova D. Y., Kohn A. B. Microchemical identification of enantiomers in early-branching animals: Lineage-specific diversification in the usage of D-glutamate and D-aspartate. Biochemical and Biophysical Research Communications. 2020. V. 527. No. 4. P. 947–952.
  65. Moroz L. L., Romanova D. Y., Nikitin M. A., et al. The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: Insights in the evolution of gaseous transmission. Scientific Reports. 2020. V. 10. No. 1. P. 13020.
  66. Najle S. R., Grau-Bové X., Elek A., et al. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell. 2023. V. 186. No. 21. P. 4676–4693.
  67. Nakano H. Survey of the Japanese coast reveals abundant placozoan populations in the Northern Pacific Ocean. Scientific Reports. 2014. V. 4. P. 5356.
  68. Nikitin M. A., Romanova D. Y., Borman S. I., Moroz L. L. Amino acids integrate behaviors in nerveless placozoans. Frontiers in Neuroscience. 2023. V. 17. P. 1125624.
  69. Nikitin M. A., Romanova D. Y., Moroz L. L. Bioinformatic Prohormone Discovery in Basal Metazoans: Insights from Trichoplax. Ctenophores: Methods and Protocols. 2024. New York, NY: Springer US. P. 531–581.
  70. Nikitin M. Bioinformatic prediction of Trichoplax adhaerens regulatory peptides. General and Comparative Endocrinology. 2015. V. 212. P. 145–155.
  71. Noll, F. C. Zber das Leben niederer Seatiere. Ber. Senckenberg. Ges. Frankfurt. 1890. P. 85–87.
  72. Osigus, H. J., Rolfes, S., Herzog, R., Kamm, K., Schierwater, B. Polyplacotoma mediterranea is a new ramified placozoan species. Current Biology. 2019. V. 29. No. 5. P. 148–149.
  73. Paknia O., Schierwater B. Global habitat suitability and ecological niche separation in the phylum Placozoa. PLoS One. 2015. V. 10. No. 11. P. e0140162.
  74. Pearse V., Voigt O.B. Field biology of placozoans (Trichoplax): Distribution, diversity, biotic interactions. Integr. Comp. Biol. 2007. V. 47. No. 5. P. 677–692.
  75. Pearse V.B. Growth and behavior of Trichoplax adhaerens: First record of the phylum Placozoa in Hawaii. Pac. Sci. V. 43. No. 2. P. 117–121.
  76. Piekut T., Wong Y.Y., Walker S.E., et al. Early metazoan origin and multiple losses of a novel clade of rim presynaptic calcium channel scaffolding protein homologs. Genome Biol. Evol. 2020. V. 12. No. 8. P. 1217–1239.
  77. Popgeorgiev N., Sa J. D., Jabbour L., et al. Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Science Advances. 2020. V. 6. No. 40. P. eabc4149.
  78. Rassat J., Ruthmann A. Trichoplax adhaerens F. E. Schulze (Placozoa) in the scanning electron microscope. Zoomorphologie. 1979. V. 93. P. 59–72.
  79. Remane A. Die Entstehung der Metamerie der Wirbellosen. Verh. Deutsch. Zool. Ges. 1950. P. 16–23.
  80. Rozhnov S. V. Development of the trophic structure of Vendian and Early Paleozoic marine communities. J. Paleontol. 2009. V. 43. P. 1364–1377.
  81. Romanova, D. Y. Cell types diversity of H4 haplotype Placozoa sp. Marine Biological Journal. 2019. V. 4. No. 1. P. 81–90.
  82. Romanova, D. Y., Heyland, A., Sohn, D., Kohn, A. B., Fasshauer, D., Varoqueaux, F., Moroz, L. L. Glycine as a signaling molecule and chemoattractant in Trichoplax (Placozoa): Insights into the early evolution of neurotransmitters. NeuroReport. 2020. V. 31. No. 6. P. 490–497.
  83. Romanova, D. Y., Smirnov, I. V., Nikitin, M. A., et al. Sodium action potentials in placozoa: Insights into behavioral integration and evolution of nerveless animals. Biochemical and biophysical research communications. 2020. V. 532. No. 1. P. 120–126.
  84. Romanova, D. Y., Varoqueaux, F., Daraspe, J., et al. Hidden cell diversity in Placozoa: Ultrastructural insights from. Hoilungia hongkongensis. Cell and Tissue Research. 2021. V. 385. P. 623–637.
  85. Romanova D. Y., Nikitin M. A., Shchenkov S. V., Moroz L. L. Expanding of life strategies in Placozoa: Insights from long-term culturing of Trichoplax and Hoilungia. Frontiers in Cell and Developmental Biology. 2022. V. 10. P. 823283.
  86. Romanova D. Y., Varoqueaux F., Eitel M., Yoshida M. A., Nikitin M. A., Moroz L. L. Long-Term Culturing of Placozoans (Trichoplax and Hoilungia). Ctenophores: Methods and Protocols. 2024. New York, NY: Springer US. P. 509–529.
  87. Romanova D. Y., Moroz L. L. The ancestral architecture of the immune system in simplest animals. Frontiers in Immunology. 2025. V. 15. P. 1529836.
  88. Ruthmann A. Cell differentiation, DNA content and chromosomes of Trichoplax adhaerens F.E. Schulze. Cytobiol. V. 15. P. 58–64.
  89. Schierwater B., Eitel M., Jakob W., et al. Concatenated analysis sheds light on early metazoan evolution and fuels a modern 'urmetazoon' hypothesis. PLoS Biology. 2009. V. 7. No. 1. P. e1000020.
  90. Schierwater B. My favorite animal, Trichoplax adhaerens. BioEssays. 2005. V. 27. No. 12. P. 1294–1302.
  91. Schierwater B., DeSalle R. Placozoa. Current Biology. 2018. V. 28. No. 3. P. 97–98.
  92. Schierwater B., Kolokotronis S. O., Eitel M., DeSalle R. The Diploblast-Bilateria sister hypothesis: Parallel evolution of nervous systems in animals. Communicative & Integrative Biology. 2009. V. 2. No. 5. P. 403–405.
  93. Schierwater B., Kamm K. The early evolution of Hox genes: a battle of belief? Hox Genes: Studies from the 20th to the 21st Century. 2010. P. 81–90.
  94. Schierwater B., Eitel M., Osigus H. J., et al. Trichoplax and Placozoa: one of the crucial keys to understanding metazoan evolution. Key Transitions in Animal Evolution. 2010. V. 289. P. 326.
  95. Schleicherová D., Dulias K., Osigus H. J., Paknia O., Hadrys H., Schierwater B. The most primitive metazoan animals, the placozoans, show high sensitivity to increasing ocean temperatures and acidities. Ecology and Evolution. 2017. V. 7. No. 3. P. 895–904.
  96. Schubotz H. Ist Trichoplax die umgewandelte Planula einer Hydromeduse. Zool. Anz. 1912. V. 39. P. 582–585.
  97. Schuchert, P. Trichoplax adhaerens (Phylum Placozoa) has cells that react with antibodies against the neuropeptide RFamide. Acta Zoologica. 1993. V. 74. No. 2. P. 115–117.
  98. Schulze, F. E. Trichoplax adhaerens, nov. gen., nov. spec. Zool. Anz. 1883. V. 6. P. 92–97.
  99. Schwartz V. Das radialpolare Differenzierungsmuster bei Trichoplax adhaerens F.E. Schulze (Placozoa)/the radial polar pattern of differentiation in Trichoplax adhaerens F.E. Schulze (Placozoa). Zeitschrift für Naturforschung C. 1984. V. 39. No. 7–8. P. 818–832.
  100. Sebé-Pedrós A., Chomsky E., Pang K., et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nature Ecology & Evolution. 2018. V. 2. No. 7. P. 1176–1188.
  101. Sedgwick A. On the origin of metameric segmentation and some other morphological questions. Quart. J. Microsc. Sci. N.S. 1884. V. 24. P. 43–82.
  102. Senatore A., Reese T.S., Smith C.L. Neuropeptidergic integration of behavior in Trichoplax adhaerens, an animal without synapses. Journal of Experimental Biology. 2017. V. 220. No. 18. P. 3381–3390.
  103. Senatore A., Raiss H., Le P. Physiology and evolution of voltage-gated calcium channels in early diverging animal phyla: Cnidaria, Placozoa, Porifera and Ctenophora. Frontiers in Physiology. 2016. V. 7. P. 481.
  104. Senatore A., Spafford J.D. Voltage-gated calcium channels in invertebrates. Voltage-gated calcium channels. Cham: Springer International Publishing. 2022. P. 115–158.
  105. Signorovitch A.Y., Dellaporta S.L., Buss L.W. Caribbean placozoan phylogeography. The Biological Bulletin. 2006. V. 211. No. 2. P. 149–156.
  106. Signorovitch A.Y., Buss L.W., Dellaporta S.L. Comparative genomics of large mitochondria in placozoans. PLoS Genetics. 2007. V. 3. No. 1. P. e13.
  107. Smith C. L., Pivovarova N., Reese T. S. Coordinated feeding behavior in Trichoplax, an animal without synapses. PLoS One. 2015. V. 10. No. 9. P. e0136098.
  108. Smith C. L., Abdallah S., Wong Y. Y., et al. Evolutionary insights into T-type Ca2+ channel structure, function, and ion selectivity from the Trichoplax adhaerens homologue. Journal of General Physiology. 2017. V. 149. No. 4. P. 483–510.
  109. Smith C. L., Mayorova T. D. Insights into the evolution of digestive systems from studies of Trichoplax adhaerens. Cell and Tissue Research. 2019. V. 377. P. 353–367.
  110. Smith C. L., Varoqueaux F., Kittelmann M., et al. Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Current Biology. 2014. V. 24. No. 14. P. 1565–1572.
  111. Sperling E. A., Vinther J. A. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol. Dev. 2010. V. 12. P. 201–209.
  112. Sperling E. A., Peterson K. J., Pisani D. Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa. Molecular Biology and Evolution. 2009. V. 26. No. 10. P. 2261–2274.
  113. Srivastava M., Begovic E., Chapman J., et al. The Trichoplax genome and the nature of placozoans. Nature. 2008. V. 454. No. 7207. P. 955–960.
  114. Stabili, L. The mucus of marine invertebrates. Enzymatic technologies for marine polysaccharides. 2019. P. 151–162.
  115. Stiasny, G. Einige histologische Details über Trichoplax adhaerens. Zeitschrift für wissenschaftliche Zoologie. 1903. V. 75. P. 430–436.
  116. Syed, T., Schierwater, B. The evolution of the Placozoa: a new morphological model. Senckenbergiana lethaea. 2002. V. 82. No. 1. P. 315–324.
  117. Syed T., Schierwater B. Trichoplax adhaerens: Discovered as a missing link forgotten as a hydrozoan, re-discovered as a key to metazoan evolution. Vie et Milieu/Life & Environment. 2002. P. 177–187.
  118. Tessler M., Neumann J. S., Kamm K., et al. Phylogenomics and the first higher taxonomy of Placozoa, an ancient and enigmatic animal phylum. Frontiers in Ecology and Evolution. 2022. V. 10. P. 1016357.
  119. Thiemann M., Ruthmann A. Alternative modes of asexual reproduction in Trichoplax adhaerens (Placozoa). Zoomorphology. 1991. V. 110. P. 165–174.
  120. Thiemann M., Ruthmann A. Spherical forms of Trichoplax adhaerens (Placozoa). Zoomorphology. 1990. V. 110. P. 37–45.
  121. Thiemann M., Ruthmann A. Trichoplax adhaerens FE Schulze (Placozoa): The formation of swarmers. Zeitschrift für Naturforschung C. 1988. V. 43. No. 11–12. P. 955–957.
  122. Ueda T., Koya S., Maruyama Y.K. Dynamic patterns in the locomotion and feeding behaviors by the placozoan Trichoplax adhaerens. Biosystems. 1999. V. 54. No. 1–2. P. 65–70.
  123. Varoqueaux F., Williams E.A., Grandemange S., et al. High cell diversity and complex peptidergic signaling underlie placozoan behavior. Current Biology. 2018. V. 28. No. 21. P. 3495–3501.
  124. Voigt O., Collins A.G., Pearse V.B., Pearse J.S., Ender A., Hadrys H., Schierwater B. Placozoa — no longer a phylum of one. Current Biology. 2004. V. 14. No. 22. P. 944–945.
  125. Whelan N. V., Kocot K. M., Moroz T. P., Mukherjee K., Williams P., Paulay G., Moroz L. L., Halanych K. M. C. Ctenophore relationships and their placement as the sister group to all other animals. Nature Ecology & Evolution. 2017. V. 1. No. 11. P. 1737–1746.
  126. Zhong G., Kroo L., Prakash M. Thermotaxis in an apolar, non-neuronal animal. Journal of the Royal Society Interface. 2023. V. 20. No. 206. Art. no. 20230279.
  127. Zuccolotto-Arellano J., Cuervo-González R. Binary fission in Trichoplax is orthogonal to the subsequent division plane. Mechanisms of Development. 2020. V. 162. Art. no. 103608.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).