Possibility of human embryo genome editing continues to be debated

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In 2021, the International Society for Stem Cell Research (ISSCR) cancelled the famous “Rule of 14 days” that has been regulating research on human embryos. This led to the emergence of novel controversial problems in bioethics, which are related to prospects of human genome editing in embryo. Theoretically, one can treat more than ten thousand inherited diseases with the use of gene editing techniques. Practically, these techniques have already been applied for treating a number of adults’ diseases. However, therapy based on gene editing technologies did not always lead to positive effects. Moreover, one may ask, whether these techniques can be used for gene editing of human embryos and gametes so that healthy children would be born that would have hereditary diseases otherwise. In this brief communication, we consider arguments “in favour” and “against”. We conclude that risks overweigh the potential good at this stage of gene editing techniques development.

About the authors

K. S. Sharov

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: const@idb-ras.ru
Vavilova st., 26, Moscow, 119334 Russia

References

  1. Anzalone A.V., Gao X.D., Podracky C.J. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing // Nat Biotechnol. 2022. V. 40. P. 731–740. https://doi.org/10.1038/s41587-021-01133-w
  2. Arjmand B., Larijani B., Hosseini M.S. et al. The horizon of gene therapy in modern medicine: advances and challenges // Adv. Exp. Med. Biol. 2020. V. 1247. P. 33–64. https://doi.org/10.1007/5584_2019_463
  3. Balon K., Sheriff A., Jacków J. et al. Targeting cancer with CRISPR/Cas9-based therapy // Int. J. Mol. Sci. 2022. V. 23. Art. 573. https://doi.org/10.3390/ijms23010573
  4. Birney E. A society-wide conversation is needed about germline genome editing using CRISPR // Nat. Med. 2024. V. 30. P 30–32. https://doi.org/10.1038/s41591-023-02681-1
  5. De Graeff N., De Proost L., Munsie M. ‘Ceci n’est pas un embryon?’ The ethics of human embryo model research // Nat. Methods. 2023. V. 20. P. 1863–1867. https://doi.org/10.1038/s41592-023-02066-9
  6. Doudna J.A., Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 // Science. 2014. V. 346 (6213). Art. 1258096. https://doi.org/10.1126/science.1258096
  7. Doudna J.A., Sternberg S.H. A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution. San Francisco: Mariner, 2017.
  8. FDA (Federal Drug Association). Casgevy approval. 2024. URL: https://www.fda.gov/vaccines-blood- biologics/casgevy
  9. Foreman A.L., Liddell K., Franklin S. et al. Human embryo models: the importance of national policy and governance review // Curr. Op. Genetics Develop. 2023. V. 82. Art. 102103. https://doi.org/10.1016/j.gde.2023.102103
  10. Goguen R.P., Chen M.J., Dunkley O.R.S. Gene therapy to cure HIV infection // Virologie (Montrouge). 2023. V. 27. P. 63–84. https://doi.org/10.1684/vir.2023.1024
  11. Grebenshchikova E.G., Andreyuk D.S., Vasiliev A.V. et al. Russia’s stance on gene-edited humans // Nature. 2019. V. 575. P. 596. http://dx.doi.org/10.1038/d41586-019-03617-x
  12. Griciuc A., Federico A. N., Natasan J. et al. Gene therapy for Alzheimer’s disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation // Hum. Mol. Genet. 2020. V. 29. P. 2920–2935. https://doi.org/10.1093/hmg/ddaa179
  13. Guo C., Ma X., Gao F. et al. Off-target effects in CRISPR/Cas9 gene editing // Front. Bioeng. Biotechnol. 2023. V. 11. Art. 1143157. https://doi.org/10.3389/fbioe.2023.1143157
  14. Harari Y.N. Homo deus: A Brief History of Tomorrow. New York: Penguin, 2017.
  15. Hsu P.D., Scott D.A., Weinstein J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases // Nat. biotechnol. 2013. V. 31. P. 827–832. https://doi.org/10.1038/nbt.2647
  16. Huxley A. Brave New World. London: Nobel, 2024.
  17. ISSCR Guidelines. ISSCR Guidelines for Stem Cell Research and Clinical Translation. https://www.isscr.org/docs/default-source/all-isscr-guidelines/2021-guidelines/isscr-guidelines-for-stem-cell-research-and-clinical-translation-2021.pdf?sfvrsn=979d58b1_4
  18. Kim A., Lalonde K., Truesdell A. et al. New avenues for the treatment of Huntington’s disease // Int. J. Mol. Sci. 2021. V. 22. Art. 8363. https://doi.org/10.3390/ijms22168363
  19. Kondkar A.A., Abu-Amero K.K. Leber congenital amaurosis: Current genetic basis, scope for genetic testing and personalized medicine. Exp Eye Res. 2019. V. 189. Art. 107834. https://doi.org/10.1016/j.exer.2019.107834
  20. Ledford H. CRISPR gene editing in human embryos wreaks chromosomal mayhem // Nature. 2020. V. 583. P. 17–18.
  21. Liu G., Lin Q., Jin S. et al. The CRISPR-Cas toolbox and gene editing technologies // Molecular Cell. 2022. V. 82. № 2. P. 333–347. https://doi.org/10.1016/j.molcel.2021.12.002
  22. Matthews K.R.W., Iltis A.S., Marquez N.G. et al. Rethinking human embryo research policies // Hastings Center Rep. 2021. 2021. V. 51. P. 47–51. https://doi.org/10.1002/hast.1215
  23. Pierce E.A., Aleman T.S., Jayasundera K.T. et al. Gene editing for CEP290-associated retinal degeneration // New Engl. J. Med. 2024. V. 390. P. 1972–1984. https://doi.org/10.1056/NEJMoa2309915
  24. Rivron N.C., Arias A.M., Pera M.F. et al. An ethical framework for human embryology with embryo models // Cell. 2023. V. 186. P. 3548–3557. https://doi.org/10.1016/j.cell.2023.07.028
  25. Sassin W., Donskikh O., Gnes A. et al. Evolutionary environments. Homo sapiens — an endangered species? Innsbruck: Studia Universitätsverlag, 2018.
  26. Scholefield J., Harrison P.T. Prime editing–an update on the field // Gene Therapy. 2021. V. 28. P. 396–401. https://doi.org/10.1038/s41434-021-00263-9
  27. Statement from the Organising Committee of the Third International Summit on Human Genome Editing, Royal Society. https://royalsociety.org/news/2023/03/statement-third-international-summit-human-genome-editing
  28. Subbaraman N. Limit on lab-grown human embryos dropped by stem-cell body // Nature. 2021. V. 594. P. 18–19. https://doi.org/10.1038/d41586-021-01423-y
  29. Thompson A.A., Walters M.C., Kwiatkowski J. et al. Gene therapy in patients with transfusion-dependent β-thalassemia // New Engl. J. Med. 2018. V. 378. P. 1479–1493. https://doi.org/10.1056/NEJMoa1705342
  30. Warnock M. Report of the committee of inquiry into human ertilization and embryology. London: Her Majesty’s Stationery Office, 1984. http://www.hfea.gov.uk/docs/Warnock_Report_of_the_Committee_of_Inquiry_into_Human_Fertilisation_and_ Embryology_1984.pdf
  31. Zhao Z., Shang P., Mohanraju P. et al. Prime editing: advances and therapeutic applications // Trends Biotechnol. 2023. V. 41. P. 1000–1012.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).