Genealogy of neurons: 50 years of reconstructing the evolution of nervous systems

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

On November 11, Dmitry Antonovich Sakharov (1930–2024), a unique person, mentor, scientist and poet, passed away. This year, the world community celebrates the 50th anniversary of the publication of his book “Genealogy of Neurons”, which had a profound influence on several generations of neuroscientists. The hypotheses, strategies and experimental approaches presented in this book remain relevant and inspiring today. We outline Sakharov’s hypotheses on neuronal polyphyly and the functional significance of neuronal heterogeneity in light of recent comparative, genomics, and single-cell transcriptomic data.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Moroz

University of Florida

Хат алмасуға жауапты Автор.
Email: leonidlmoroz@gmail.com
АҚШ, Florida

V. Dyakonova

N.K. Koltsov Institute of Developmental Biology of the Russian Academy of Sciences

Email: dyakonova.varvara@gmail.com
Ресей, Moscow, 119334, ul. Vavilova, 26

Әдебиет тізімі

  1. Артемов Н.М., Сахаров Д.А. Хачатур Седракович Коштоянц. М.: Наука, 1986.
  2. Боровягин В.Л., Сахаров Д.А. Ультраструктура гигантских нейронов тритонии. Атлас. М.: Наука, 1968.
  3. Вагнер Н.П. Беспозвоночные Белого моря. Зоологические исследования, произведенные на берегах Соловецкого залива в летние месяцы 1876, 1877, 1879 и 1882 г. Николаем Вагнером Почетным Членом и Ординарным Профессором Императорского С.- Петербургского Университета. Типография М. М. Стасюлевича, Санкт-Петербург, 1885 г.
  4. Вепринцев Б.Н., Крастс И.В., Сахаров Д.А. Нервные клетки голожаберного моллюска Tritonia diomedia Bergh // Биофизика. 1964. Т. 9. С. 327–336.
  5. Коштоянц Х.С.. Основы сравнительной физиологии. Т. 2. Сравнительная физиология нервной системы. М.: Наука, 1957.
  6. Сахаров Д.А. Об автоматизме педальных ганглиев у крылоногого моллюска Clione limacina L. // Научн. докл. высш. школы (биол. науки). 1960. № 3. С. 60–62.
  7. Сахаров Д.А. Гигантские нервные клетки у голожаберных моллюсков Aeolidia papillosa и Dendronotus frondosus // Журн. общ. биол. 1962. Т. 23. С. 308–311.
  8. Сахаров Д.А. Основания к построению системы нервных клеток // Журнал общей биологии. 1970. Т. 31. N.4. С. 449–457.
  9. Сахаров Д.А. Почему нейроны разные? // Природа. 1972, № 10. С. 52–62.
  10. Сахаров Д.А. Генеалогия нейронов. 1974. М.: Наука.
  11. Сахаров Д.А. Синаптическая и бессинаптическая модели нейронной системы // Простые нервные системы. Ч. 2. 1985. Казань: КГУ, С. 78–80.
  12. Сахаров Д.А. Множественность нейротрансмиттеров: функциональное значение // Журнал эвoлюционной биoxимии и физиoлогии. 1990. Т. 26. № 5. С. 733–741.
  13. Сахаров Д.А. Нейронная основа мозговых функций: коннектом versus транскриптом // Когнитивная наука в Москве: новые исследования. М.: Буки-Веди, 2015. С. 395–400.
  14. Caxapoв Д.A., Kaбoтянcкий E.A. Интeгpaция пoвeдeния кpылoнoгoгo мoллюcкa дoфaминoм и cepoтoнинoм // Жypн. общ. биoлогии. 1986. Т. 47. № 2. С. 234–244.
  15. Alexeeva V., Borovikov D., Miller M.W., Rosen S.C., and Cropper E.C. Effect of a serotonergic extrinsic modulatory neuron (MCC) on radula mechanoafferent function in Aplysia // J. Neurophysiol. 1998. V. 80. P. 1609–1622. https://doi.org/ 10.1152/jn.1998.80.4.1609.
  16. Arendt D., Musser J.M., Baker C.V., Bergman A., Cepko C., Erwin D. H., Pavlicev M., Schlosser G., Widder S., and Laubichler M. D. The origin and evolution of cell types // Nature Reviews Genetics. 2016. V. 17. P. 744–775.
  17. Bach-y-Rita P., Illis L.S. Spinal shock: possible role of receptor plasticity and non synaptic transmission // Paraplegia. 1993. V. 31. N. 2. P. 82–87. https://doi.org/10.1038/sc.1993.14
  18. Bargmann C.I. Beyond the connectome: How neuromodulators shape neural circuits // Bioessays. 2012. V. 34. P. 458–465.
  19. Baysoy A., Bai Z., Satija R., and Fan. R. The technological landscape and applications of single-cell multi-omics // Nature Reviews Moleculr Cell Biology. 2023. V. 24. P. 695–713. https://doi.org/10.1038/s41580-023-00615-w
  20. Benfenati F., Agnati L.F. Communication and computation in the central nervous system // Funct. Neurol. 1991. V. 6. N. 3. P. 202–209.
  21. Chen N., Zhang Y., Rivera-Rodriguez E.J., Yu A. D., Hobin M., Rosbash M., Griffith L.C. Widespread posttranscriptional regulation of cotransmission // Sci. Adv. 2023. V. 9. N.22. https://doi.org/10.1126/sciadv.adg9836
  22. Dorkenwald S., Matsliah A., Sterling A. R. et al. Neuronal wiring diagram of an adult brain //Nature. 2024. V. 634. P. 124–138. https://doi.org/10.1038/s41586-024-07558-y
  23. Dyakonova V.E. Neuronal counter of the life span: does it exist? // Russian Journal of Developmental Biology. 2020. V. 51. P. 197–200.
  24. Dyakonova V.E. Origin and evolution of the nervous system: new data from comparative whole genome studies of multicellular animals // Russian Journal of Developmental Biology. 2022. V. 53. № 1. P. 55–64.
  25. Dyakonova V.E. DNA Instability in Neurons: Lifespan Clock and Driver of Evolution. // Biochemistry (Moscow). 2023. V. 88. № 11. P. 1719–1731. https://doi.org/10.1134/S0006297923110044
  26. Eckstein N., Bates A.S., Champion A., Du M., Yin Y., Schlegel P. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster // Cell. 2024. V. 187. N. 10. P. 2574–2594. e23. https://doi.org/10.1016/j.cell.2024.03.016
  27. Fuxe K., Agnati L.F., Härfstrand A., Zoli M., von Euler G., Grimaldi R. et al. On the role of neuropeptide Y in information handling in the central nervous system in normal and physiopathological states. Focus on volume transmission and neuropeptide Y/alpha 2 receptor interactions // Ann. NY Acad. Sci. 1990. V. 579. P. 28–67. https://doi.org/10.1111/j.1749-6632.1990.tb48351.x
  28. Kocot K.M., Cannon J.T., Todt C., Citarella M.R., Kohn A.B., Meyer A. et al. Phylogenomics reveals deep molluscan relationships // Nature. 2011. V. 477. P. 452–456. https://doi.org/10.1038/nature10382
  29. Koshtoyants Kh.S., Buznikov G.A., Manukhin B.N. The possible role of 5-hydroxytryptamine in the motor activity of embryos of some marine gastropods // Comp. Biochem. Physiol. 1961. V. 3. N. 1. P. 20–26.
  30. Krienen F.M., Levandowski K.M., Zaniewski H., Del Rosario R.C.H., Schroeder M.E., Goldman M. et al. A marmoset brain cell census reveals regional specialization of cellular identities // Sci. Adv. 2023. V. 9. N.41. eadk3986. https://doi.org/10.1126/sciadv.adk3986
  31. Kopell N.J., Gritton H.J., Whittington M.A., Kramer M.A. Beyond the connectome: the dynome // Neuron. 2014. V. 83. N. 6. P. 1319–1328.
  32. Lacin H., Chen H.-M., Long X., Singer R. H., Lee T., Truman J.W. Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS // Elife. 2019. V. 8. https://doi.org/10.7554/eLife.43701
  33. Lin A., Yang R., Dorkenwald S. et al. Network statistics of the whole-brain connectome of Drosophila // Nature. 2024. V. 634. P. 153–165. https://doi.org/10.1038/s41586-024-07968-y
  34. Moroz L.L. Evolutionary conservative and plastic elements in nervous system of the Mollusca // In: Problems of Modern Biology. Moscow University Press. 1986. pp. 19–23.
  35. Moroz L.L. Phylogenetic plasticity of neuronal cells in molluscan nervous systems //In: Simple Nervous Systems. D. Sakharov, ed. Nauka. 1988. pp. 198–202.
  36. Moroz L.L. Monoaminergic control of the respiratory behaviour in freshwater pulmonate snail, Lymnaea stagnalis (L.) // In: Signal Molecules and Behaviour. W. Winlow, O. V. Vinogradova, and D. A. Sakharov, eds. Manchester University Press. 1991. pp. 101–123.
  37. Moroz L.L. On the independent origins of complex brains and neurons // Brain Behav. Evol. 2009. V. 74. P. 177–190. https://doi.org/10.1159/000258665
  38. Moroz L.L. The genealogy of genealogy of neurons // Commun. Integr. Biol. 2014. V. 7. e993269. https://doi.org/10.4161/19420889.2014.993269
  39. Moroz L.L. Neurosystematics and periodic system of neurons: model vs reference species at single-cell resolution // ACS Chem. Neurosci. 2018. V. 9. P. 1884–1903. https://doi.org/10.1021/acschemneuro.8b00100
  40. Moroz L.L. Multiple origins of neurons from secretory cells // Frontiers in Cell and Developmental Biology. 2021. V. 9. P. 669087.
  41. Moroz L.L. Brief History of Ctenophora // Methods Mol. Biol. 2024. V. 2757. P. 1–26. https://doi.org/10.1007/978-1-0716-3642-8_1
  42. Moroz L.L., Kocot K.M., Citarella M.R., Dosung S., Norekian T.P., Povolotskaya I.S. et al. The ctenophore genome and the evolutionary origins of neural systems // Nature. 2014. V. 510. P. 109–114. https://doi.org/10.1038/nature13400
  43. Moroz L.L., Nikitin M.A., Poličar P.G., Kohn A.B., Romanova D. Y. Evolution of glutamatergic signaling and synapses // Neuropharmacology. 2021a. V. 199. P. 108740.
  44. Moroz L.L., Romanova D.Y., Kohn A.B. Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters // Philosophical Transactions of the Royal Society B. 2021b. V. 376. P. 1821. 20190762.
  45. Moroz L.L., Romanova D.Y. Alternative neural systems: What is a neuron? (Ctenophores, sponges and placozoans) // Front. Cell Dev. Biol. 2022. V. 10. 1071961. https://doi.org/10.3389/fcell.2022.1071961
  46. Moroz L.L., Collins R., Paulay G. Ctenophora: Illustrated Guide and Taxonomy // Methods Mol. Biol. 2024. V. 2757. P. 27–102. https://doi.org/10.1007/978-1-0716-3642-8_2
  47. Musser J.M., Schippers K.J., Nickel M., Mizzon G., Kohn A.B., Pape C. et al. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution // Science. 2021. V. 374. P. 717–723. https://doi.org/10.1126/science.abj2949
  48. Rózsa K.S., Dyakonova T.L. Interaction of serotonin and leu-enkephalin on the habituating central neurons of Helix pomatia L. in situ and in vitro // Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1989. V. 92. N.2. P. 361–370. https://doi.org/10.1016/0742-8413(89)90069-8
  49. Rosen S.C., Kupfermann I., Goldstein R.S., and Weiss K.R. Lesion of a serotonergic modulatory neuron in Aplysia produces a specific defect in feeding behavior // Brain Res. 1983. V. 260. P. 151–155. https://doi.org/10.1016/0006-8993(83)90778-3
  50. Rosen S.C., Kupfermann I., Goldstein R.S., and Weiss K.R. Lesion of a serotonergic modulatory neuron in Aplysia produces a specific defect in feeding behavior // Brain Res. 1983. V. 260. P. 151–155. https://doi.org/10.1016/0006-8993(83)90778-3
  51. Sakharov D.A. Evolutionary aspects of transmitter heterogeneity // J. Neural. Transm. 1974а. Suppl. 11. P. 43–59. PMID: 4152422.
  52. Sakharov D.A. Evolutionary aspects of transmitter heterogeneity // In: Neurovegetative Transmission Mechanisms: Proceedings of the International Neurovegetative Symposium, (1974b). Tihany. June 19–24. P. 43–59. Vienna: Springer Vienna.
  53. Schlegel P., Yin Y., Bates A.S. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila // Nature. 2024. V. 634. P. 139–152. https://doi.org/10.1038/s41586-024-07686-5
  54. Tarashansky A.J., Musser J.M., Khariton M., Li P., Arendt D., Quake S.R., Wang B. Mapping single-cell atlases throughout Metazoa unravels cell type evolution // Elife. 2021. V. 10. e66747.
  55. Whelan N.V., Kocot K.M., Moroz T.P., Mukherjee K., Williams P., Paulay G., Moroz L.L., Halanych K.M. Ctenophore relationships and their placement as the sister group to all other animals // Nat. Ecol. Evol. 2017. V. 1. P. 1737–1746. https://doi.org/10.1038/s41559-017-0331-3
  56. Yao Z., van Velthoven C.T.J., Kunst M., Zhang M., McMillen D., Lee C. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain // Nature. 2023. V. 624. N.7991. P. 317–332. https://doi.org/10.1038/s41586-023-06812-z

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Dmitry Antonovich Sakharov, scientist and poet, 2012 Photo: Vyacheslav Korotikhin.

Жүктеу (124KB)
3. Fig. 1. Nudibranchs are popular neurobiological models. Tritonia tetraquetra (Pallas, 1788) [formerly known as T. diomedea], Clione limacina (Phipps, 1774) from Friday Harbor, USA, Aplysia californica (J. G. Cooper, 1863) from California, USA. Photo: Leonid Moroz.

Жүктеу (318KB)
4. Fig. 2. A — MCC of different mollusks, drawing by Sakharov (Sakharov, 1974); B — dorsal view of the living central nervous system of Tritonia with giant neurons of the MCC; some other giant neurons are shown by asterisks; photo: Leonid Moroz.

Жүктеу (290KB)
5. Fig. 3. The principle of hierarchical classification of neurons based on the similarity of transcriptomes of single neurons. The number of groups at each hierarchical level is indicated (according to the article by Yao et al., 2023).

Жүктеу (161KB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».