foxn4 Expression Pattern Suggests Its Association with Neurosensory Cells in the White Sea Hydrozoan Sarsia loveni
- 作者: Vetrova A.A.1, Prudkovsky A.A.2, Kremnyov S.V.1,2
-
隶属关系:
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences
- Lomonosov Moscow State University
- 期: 卷 54, 编号 5 (2023)
- 页面: 368-374
- 栏目: Short communications
- URL: https://journals.rcsi.science/0475-1450/article/view/137070
- DOI: https://doi.org/10.31857/S0475145023050075
- EDN: https://elibrary.ru/KBMPNK
- ID: 137070
如何引用文章
详细
The foxn4 is one of the key transcription factor genes controlling retinal formation in vertebrates. However, it is not clear whether its association with light-sensitive organ formation is evolutionary conserved. To answer this question, we tested whether the expression of this gene is localized within light-sensitive organs in a representative of basal Metazoa, the hydroid Sarsia lovenii (Hydrozoa, Cnidaria). Usually, the life cycle of hydroids includes stages of a pelagic medusa and a benthic polyp. However, in many species, attached medusoids, in which many medusa structures are reduced, form instead of free-swimming medusa. The White Sea hydrozoan Sarsia lovenii is an exceptional example of the species, in which polyps of different haplotypes produce either pelagic medusae or attached medusoids. Comparison of gene expression in medusae and medusoids of S. lovenii is a promising model to study how the formation of morphological traits is regulated in hydrozoan cnidarians. We compared the spatial pattern of Foxn4 expression in medusae and medusoids of S. lovenii by in situ hybridization. In medusae, Foxn4 is expressed not in the photoreceptive ocelli, but in the ectoderm of the tentacle bulb around the ocellus. Although, unlike medusae, S. lovenii medusoids lack ocelli, we detected Foxn4 expression in their reduced tentacle bulbs. It is known that the tentacle bulb in hydrozoan medusae is a zone of localized formation of nematocytes, which are considered to be derivatives of mechanosensory cells. Thus, our results indicate that, in medusae and medusoids of S. lovenii, the foxn4 is not associated with the formation of photoreceptor organs, as in vertebrates. However, it may be associated with nematocytes, another type of neurosensory cells.
作者简介
A. Vetrova
Koltzov Institute of Developmental Biology of the Russian Academy of Sciences
Email: s.kremnyov@gmail.com
Russia, Moscow
A. Prudkovsky
Lomonosov Moscow State University
Email: s.kremnyov@gmail.com
Russia, Moscow
S. Kremnyov
Koltzov Institute of Developmental Biology of the Russian Academy of Sciences; Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: s.kremnyov@gmail.com
Russia, Moscow; Russia, Moscow
参考
- Chevalier S., Martin A., Leclère L. et al. Polarised expression of FoxB and FoxQ2 genes during development of the hydrozoan Clytia hemisphaerica. // Dev. Genes. Evol. 2006. V. 216. № 11. P. 709–720. https://doi.org/10.1007/s00427-006-0103-6
- Condamine T., Jager M., Leclère L. et al. Molecular characterisation of a cellular conveyor belt in Clytia medusae // Dev. Biol. 2019. V.456. № 2. P. 212–225. https://doi.org/10.1016/j.ydbio.2019.09.001
- Denker E., Manuel M., Leclère L. et al. Ordered progression of nematogenesis from stem cells through differentiation stages in the tentacle bulb of Clytia hemisphaerica (Hydrozoa, Cnidaria) // Dev Biol. 2008. V. 315. № 1. P. 99–113. https://doi.org/10.1016/j.ydbio.2007.12.023
- Edwards C. The hydroids and medusae Sarsia occulta sp. nov., Sarsia tubulosa and Sarsia loveni // J. Mar. Biol. Assoc. 1978. V. 58. № 2. P. 291–311.
- Genikhovich G., Technau U. In situ hybridization of starlet sea anemone (Nematostella vectensis) embryos, larvae, and polyps // Cold Spring Harb Protoc. 2009. V. 2009. № 9. P. pdb. prot5282. https://doi.org/10.1101/pdb.prot5282
- Golson M.L., Kaestner K.H. Fox transcription factors: from development to disease. // Development. 2016. V. 143. № 24. P. 4558–4570. https://doi.org/10.1242/dev.112672
- Kozmik Z. Pax genes in eye development and evolution // Curr Opin Genet Dev. 2005. V. 15. № 4. P. 430–438. https://doi.org/10.1016/j.gde.2005.05.001
- Kozmik Z., Daube M., Frei E. et al. Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions // Dev cell. 2003. V. 5. № 5. P. 773–785. https://doi.org/10.1016/S1534-5807(03)00325-3
- Kupaeva D.M., Vetrova A.A., Kraus Y.A. et al. Epithelial folding in the morphogenesis of the colonial marine hydrozoan, Dynamena pumila // Biosystems. 2018. V. 173. P. 157–164.
- Leclère L., Horin C., Chevalier S. et al. The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle // Nat. Ecol. Evol. 2019. V. 3. № 5. P. 801–810. https://doi.org/10.1038/s41559-019-0833-2
- Leclère L., Jager M., Barreau C. et al. Maternally localized germ plasm mRNAs and germ cell/stem cell formation in the cnidarian Clytia // Dev. Biol. 2012 V. 364. № 2. P. 236–248. https://doi.org/10.1016/j.ydbio.2012.01.018
- Liu S., Liu X., Li S. et al. Foxn4 is a temporal identity factor conferring mid/late-early retinal competence and invoed in retinal synaptogenesis // Proc. Natl. Acad. Sci. USA. 2020. V. 117. № 9. P. 5016–5027. https://doi.org/10.1073/pnas.1918628117
- Mochizuki K., Nishimiya-Fujisawa C., Fujisawa T. Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra // Dev. Genes. Evol. 2001. V. 211. № 6. P. 299–308. https://doi.org/10.1007/s004270100156
- Mochizuki K., Sano H., Kobayashi S. et al. Expression and evolutionary conservation of nanos-related genes in Hydra // Dev. Genes. Evol. 2000. V. 210. № 12. P. 591–602. https://doi.org/10.1007/s004270000105
- Oliver D., Brinkmann M., Sieger T. et al. Hydrozoan nematocytes send and receive synaptic signals induced by mechano-chemical stimuli // J. Exp. Biol. 2008. V. 211. № 17. P. 2876–2888. https://doi.org/10.1242/jeb.018515
- Prudkovsky A.A., Ekimova I.A., Neretina T.V. A case of nascent speciation: unique polymorphism of gonophores within hydrozoan Sarsia lovenii // Sci. Rep. 2019. V. 9. № 1. P. 1–13. https://doi.org/10.1038/s41598-019-52026-7
- Rebscher N., Volk C., Teo R. et al. The germ plasm component Vasa allows tracing of the interstitial stem cells in the cnidarian Hydractinia echinata // Dev. Dyn. 2008. V. 237. № 6. P. 1736–1745. https://doi.org/10.1002/dvdy.21562
- Seipel K., Yanze N., Schmid V. The germ line and somatic stem cell gene Cniwi in the jellyfish Podocoryne carnea // Int. J. Dev. Biol. 2004. V. 48. № 1. P. 1–7. https://doi.org/10.1387/ijdb.15005568
- Singla C.L., Weber C. Fine structure of the ocellus of Sarsia tubulosa (Hydrozoa, Anthomedusae) // Zoomorphology. 1982. V. 100. № 1. P. 11–22. https://doi.org/10.1007/BF00312197
- Suga H., Tschopp P., Graziussi D.F. et al. Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 32. P. 14263–14268.
- Vetrova A.A., Prudkovsky A.A., Kremnyov S.V. Distribution of nematocytes differs in two types of gonophores in hydrozoan Sarsia lovenii // bioRxiv 2023. P. 2023.03. https://doi.org/10.1101/2023.03.22.533798
- Wawersik S., Maas R.L. Vertebrate eye development as modeled in Drosophila // Hum Mol Genet. 2000. V. 9. № 6. P. 917–25. https://doi.org/10.1093/hmg/9.6.917
