Supramolecular Catalysts for the Radical Destruction of Hydroperoxides Based on Choline Derivatives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of natural quaternary ammonium compounds (QAC) of choline (Ch) and its derivatives, acetylcholine (AСh) and L-carnitine (LCh), containing the tetraalkylammonium cation (CH3)3RN+, on the radical decomposition of hydroperoxides (ROOH) was studied. In mixtures of ACh and Ch with ROOH in chlorobenzene, mixed supramolecular nanoaggregates are formed, and accelerated decomposition of ROOH into radicals takes place; the rates of radical formation measured by the inhibitor method decrease in the series ACh > Ch \( \gg \) LCh. ACh and Ch immobilized on microcrystalline cellulose retain the ability to catalyze the radical decomposition of ROOH and initiate the polymerization of styrene containing ROOH from the surface. LСh adsorbed on cellulose does not affect the decomposition of ROOH and the rate of polymerization. Scanning electron microscopy (SEM) showed that ACh and Ch adsorbed on a silicon plate accelerate the radical decomposition of ROOH and initiate oxidative condensation of egg phosphatidylcholine on the surface of the plate, while adsorbed LCh does not affect the decomposition of ROOH. LCh, unlike ACh and Ch, is an internal salt in which the R4N+ cation is neutralized by its own carboxy anion, i.e., LCh has no external counterion and, probably, for this reason, it differs from ACh and Ch in the mechanism of adsorption and interaction with ROOH.

About the authors

N. V. Potapova

Semenov Federal Research Center for Chemical Physics RAS

Author for correspondence.
Email: pot.natalia2010@yandex.ru
Russian Federation, 119991, Moscow, 4 Kosygina Street, Building 1

O. T. Kasaikina

Semenov Federal Research Center for Chemical Physics RAS

Email: pot.natalia2010@yandex.ru
Russian Federation, 119991, Moscow, 4 Kosygina Street, Building 1

M. P. Berezin

Institute of Problems of Chemical Physics, Chernogolovka Branch, Russian Academy of Sciences

Email: pot.natalia2010@yandex.ru
Russian Federation, 142432, Moscow Region, Chernogolovka, Prosp. Akad. Semenova 1

I. G. Plashchina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: pot.natalia2010@yandex.ru
Russian Federation, 119934, Moscow, 4 Kosygina Street

A. A. Gulin

Semenov Federal Research Center for Chemical Physics RAS

Email: pot.natalia2010@yandex.ru
Russian Federation, 119991, Moscow, 4 Kosygina Street, Building 1

References

  1. Paulson D.S. // American Chemical Society: Washington, DC, USA, 2007. V. 967. P. 124.
  2. Gerba C.P. // Appl. Env. Microbiol. 2015. V. 81. P. 464.
  3. Jia Y., Niu L., MaS., Li J., Tay F.R., Chen J. // Progr. Polymer Sci. 2017. V. 71. P. 53. https://doi.org/10.1016/j.progpolymsci.2017.03.0013
  4. Vereshchagin A.N., Frolov N.A., Egorova K.S., Seitkalieva M.M., Ananikov V.P. // Int. J. Mol. Sci. 2021. V. 22. P. 6793. https://doi.org/10.3390/ijms22136793
  5. Карташева З.С., Максимова Т.В., Сирота Т.В., Коверзанова Е.В., Касаикина О.Т. // Нефтехимия. 1997. Т. 37. № 3. С. 249.
  6. Касаикина О.Т., Карташева З.С., Писаренко Л.М. // Общая химия. 2008. Т. 8. С. 1298.
  7. Касаикина О.Т., Круговов Д.А., Менгеле Е.А., Березин М.П., Фокин Д.А. // Нефтехимия. 2015. Т. 55. № 6. С. 535.
  8. Круговов Д.А., Менгеле Е.А, Касаикина О.Т. // Изв. АН. Сер. Хим. 2014. № 8. С. 1837.
  9. Касаикина О.Т., Потапова Н.В., Круговов Д.А., Березин М.П. // ВМС. Сер. В. 2017. Т. 59. № 3. С. 181.
  10. Касаикина О.Т., Потапова Н.В., Круговов Д.А., Писаренко Л.М. // Кинетика и катализ. 2017. Т. 58. № 5. С. 567.
  11. Потапова Н.В., Касаикина О.Т., Березин М.П., Плащина И.Г. // Кинетика и катализ 2020. Т. 61. № 5. С. 700. https://doi.org/10.1134/S0023158420050079
  12. Al-Shareeda Z.A., Abramovich R.A., Potanina O.G., Alhejoj H. // Int. J. Pharm. Qual. Ass. 2020. V. 11. P. 361. https://doi.org/10.25258/ijpqa.11.3.10
  13. Organization for Economic Co-operation and Development (OECD), SIDS Initial Assessment Reports: Choline Chloride, 2004.
  14. Hall J.M., Savage L.M. // Exp. Neurol. 2016. V. 278. P. 62. https://doi.org/10.1016/j.expneurol.2016.01.018
  15. Cox M.A., Bassi C., Saunders M.E., Nechanitzky R., Morgado-Palacin I., Zheng C., Mak T.W. // J. Intern. Med. 2020. V. 287. P. 120. https://doi.org/10.1111/joim.13006
  16. Yonei Y., Takahashi Y., Hibino S., Watanabe M., Yoshioka T. // J. Clin. Biochem. Nutr. 2008. V. 42. P. 89.
  17. Ferreira G.C., McKenna M.C. // Neurochem. Res. 2017. V. 42. P. 1661. https://doi.org/10.1007/s11064-017-2288-7
  18. Wang M., Maki C.R., Deng Y., Tian Y., Phillips T.D. // Chem. Res. Toxicol. 2017. V. 30. P. 1694. https://doi.org/10.1021/acs.chemrestox.7b00154
  19. Kobayashi S., Makino A. // Chem. Rev. 2009. V. 109. P. 5288.
  20. Denisov E.T., Denisova T.G. Handbook of Antioxidants: Bond Dissociation Energies, Rate Constants, Activation Energies and Enthalpies of Reactions. Boca Raton: CRC press, 2000.
  21. Dougherty D.A. // Acc. Chem. Res. 2013. V. 46. P. 885.
  22. Van Arnam E.B., Dougherty D.A. // J. Med. Chem. 2014. V. 57. P. 6289.
  23. Davis M.R., Dougherty D.A. // Phys. Chem. 2015. V. 17. P. 29262.
  24. Иванчев С.С. Радикальная полимеризация. Ленинград: Химия, 1985.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (62KB)
3.

Download (128KB)
4.

Download (79KB)
5.

Download (93KB)
6.

Download (2MB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies