Ni–Co-BASED ELECTRODES FOR OXYGEN EVOLUTION REACTION IN ALKALINE WATER ELECTROLYSIS
- Autores: Kuleshova V.N.1, Kurochkina S.V.1, Kuleshova N.V.1, Klimova M.A.1, Grigorieva O.Y.1
-
Afiliações:
- National Research University “Moscow Power Engineering Institute”, Moscow, Russia
- Edição: Volume 61, Nº 8 (2025)
- Páginas: 380-391
- Seção: Специальный выпуск “Электрохимия на ХХII Менделеевском съезде общей и прикладной химии”, октябрь 2024 г., Сириус, РФ
- URL: https://journals.rcsi.science/0424-8570/article/view/352854
- DOI: https://doi.org/10.7868/S3034618525080037
- ID: 352854
Citar
Resumo
Palavras-chave
Sobre autores
V. Kuleshova
National Research University “Moscow Power Engineering Institute”, Moscow, Russia
Email: KurochkinSV@mpei.ru
S. Kurochkina
National Research University “Moscow Power Engineering Institute”, Moscow, Russia
Email: KurochkinSV@mpei.ru
N. Kuleshova
National Research University “Moscow Power Engineering Institute”, Moscow, Russia
Email: KurochkinSV@mpei.ru
M. Klimova
National Research University “Moscow Power Engineering Institute”, Moscow, Russia
Email: KurochkinSV@mpei.ru
O. Grigorieva
National Research University “Moscow Power Engineering Institute”, Moscow, Russia
Email: oksgrig@yandex.ru
Bibliografia
- Sebbahi, S., Assila, A., Belghiti, A.A., Laasri, S., Kaya, S., Hlil, El K., Rachidi, S., and Hajjaji, A., A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production, Intern. J. Hydrogen Energy, 2024, vol. 82 (11), p. 583. doi: 10.1016/j.ijhydene.2024.07.428
- Kraglund, M.R., Carmo, M., Schiller, G., Ansar, S.A., Aili, D., Christensen, E., and Jensen, J.O., Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers, Energy & Environmental Science, 2019, vol. 12, p. 3313. doi: 10.1039/C9EE00832B
- El-Shafie, M.I., Hydrogen production by water electrolysis technologies: A review, Results in Engineering, 2023, vol. 20, p. 101426. doi: 10.1016/j.rineng.2023.101426
- Emam, A.S., Hamdan, M., Abu-Nabah, B.A., and Elnajjar, E., A review on recent trends, challenges, and innovations in alkaline water electrolysis, Intern. J. Hydrogen Energy, 2024, vol. 20, p. 599. doi: 10.1016/j.ijhydene.2024.03.238
- Arsad, S.R., Arsad, A.Z., Ker, P.J., Hannan, M.A., Tang, S.G., Goh, S.M., and Mahlia, I.T.M., Recent advancement in water electrolysis for hydrogen production: A comprehensive bibliometric analysis and technology updates, Intern. J. Hydrogen Energy, 2024, vol. 60, p. 780. doi: 10.1016/j.ijhydene.2024.02.184
- Zou, Z., Dastafkan, K., Shao, Y., Zhao, C., and Wang, Q., Electrocatalysts for alkaline water electrolysis at ampere-level current densities: a review, Intern. J. Hydrogen Energy, 2024, vol. 51, р. 667. doi: 10.1016/j.ijhydene.2023.07.026
- Кулешов, Н.В., Коровин, Н.В., Удрис, Е.Я., Кулешов, В.Н., Бахин, А.Н. Разработка новых электрокатализаторов для низкотемпературного электролиза воды. Электрохимическая энергетика. 2012. Т. 12. № 2. С. 51. [Kuleshov, N.V., Korovin, N.V., Udris, E. Ya., Kuleshov, V.N., and Bakhin, A.N., Development of New Electrocatalysts for Low-Temperature Water Electrolysis, Electrochemical Power Engineering., 2012, vol. 12, no. 2, p. 51.]
- Lee, H.I., Cho, H., Kim, M., Lee, J.H., Lee, C., Lee, S., Kim, S., Kim, C., Yi, K.B., and Cho, W., The structural effect of electrode mesh on hydrogen evolution reaction performance for alkaline water electrolysis, Frontiers in Chemistry, 2021, vol. 9, p. 787787. doi: 10.3389/fchem.2021.787787
- Seetharaman, S., Balaji, R., Ramya, K., Dhathathreyan, K.S., and Velan, M., Electrochemical behaviour of nickel-based electrodesfor oxygen evolution reaction in alkaline water electrolysis, Ionics, 2014, vol. 20, p. 713.
- Schalenbach, M., Kasian, O., and Mayrhofer, K.J.J., An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation, Intern. J. Hydrogen Energy, 2018, vol. 43, p. 11932. doi: 10.1016/j.ijhydene.2018.04.219
- Elsharkawy, S., Kutyła, D., Marzec, M.M., and Zabinski, P., Electrodeposition of hydrophobic Ni thin films from different baths under the influence of the magnetic field as electrocatalysts for hydrogen production, Intern. J. Hydrogen Energy, 2024, vol. 61, p. 873. DOI: https://doi.org/10.1016/j.ijhydene.2024.03.045
- Chen, M. and Guan, J., Achievements and challenges in cobalt-based catalysts for water electrolysis, Chem. Eng. J., 2024, vol. 500, p. 157080. doi: 10.1016/j.cej.2024.157080
- Yang, F., Dong, G., Meng, L., Liu, L., Liu, X., Zhang, Z., Zhao, M., and Zhang, W., One-step electrodeposition of bifunctional MnCoPi electrocatalysts with wrinkled globular-flowers-like structure for highly efficient electrocatalytic water splitting, Intern. J. Hydrogen Energy, 2024, vol. 77, p. 589. doi: 10.1016/j.ijhydene.2024.06.235
- Guo, D., Wen, L., T., and Wang, Li, X., Electrodeposition synthesis of cobalt-molybdenum bimetallic phosphide on nickel foam for efficient water splitting, J. Colloid and Interface Sci., 2024, vol. 659, p. 707. doi: 10.1016/j.jcis.2023.09.173
- Lin, Y., Zhang, D., and Gong, Y., Ultralow ruthenium loading Cobalt-molybdenum binary alloy as highly efficient and super-stable electrocatalyst for water splitting, Appl. Surface Sci., 2021, vol. 541, p. 148518. doi: 10.1016/j.apsusc.2020.148518
- Liu, X., Guo, R., Kun, N., Xia, F., Niu, C., Wen, B., Meng, J., Wu, P., Wu, J., Wu, X., and Mai, L., Reconstruction-determined alkaline water electrolysis at industrial temperatures, Adv. Mater., 2020, vol. 32, p. 1. doi: 10.1002/adma.202001136
- MI, J. and Sun, X., Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review, J. Power Sources, 2018, vol. 400, p. 31. doi: 10.1016/j.jpowsour.2018.07.125
- Jin, H., Ruqia, B., Park, Y., Kim, H.J., Oh, H., Choi, S., and Lee, K., Nanocatalyst design for long- term operation of proton/anion exchange membrane water electrolysis, Adv. Energy Mater., 2021, vol. 11, p. 1. doi: 10.1002/aenm.202003188
- Kuleshov, N.V., Kuleshov, V.N, Dovbysh, S.A., Kurochkin, S.V., Udris, E.Ya., and Slavnov, Yu.A., Polysulfone-based polymeric diaphragms for electrochemical devices with alkaline electrolyte, Russ. J. Appl. Chem., 2018, vol. 91, p. 930. doi: 10.1134/S1070427218060083
- Кулешов, В.Н., Кулешов, Н.В., Курочкин, С.В., Григорьева, О.Ю. Синтез и исследование электродно-диафрагменных блоков для щелочного электролиза воды. Электрохимия. 2022. Т. 58. С. 253. [Kuleshov, V.N., Kuleshov, N.V., Kurochkin, S.V., and Grigor’eva, O.Yu., Synthesis and Investigation of Electrode–Diaphragm Assemblies for Alkaline Water Electrolysis, Russ. J. Electrochem., 2022, vol. 58, p. 253.] doi: 10.1134/S1023193522060052
- Кулешов, В.Н., Курочкин, С.В., Кулешов, Н.В., Гаврилюк, А.А., Пушкарева, И.В., Климова, М.А., Григорьева О.Ю. Щелочной электролиз воды с анионообменными мембранами и катализаторами на основе никеля. Электрохимия. 2023. Т. 59. С. 735. [Kuleshov, V.N., Kurochkin, S.V., Kuleshov, N.V., Gavriluk, A.A., Pushkareva, I.V., Klimova, M.A., and Grigorieva, O.Y., Alkaline Water Electrolysis With Anion-Exchange Membranes And Different Types Of Electrodes, Russ. J. Electrochem., 2023, vol. 59, p. 915.] doi: 10.31857/S0424857023110105
- Якименко, Л.М., Модылевская, И.Д., Ткачек З.А. Электролиз воды. М.: Химия, 1970. С. 63. [Yakimenko, L.M., Modylevskaya, I.D., and Tkachek, Z.A. Electrolysis of water (in Russian), Moscow: Khimiya, 1970. p. 63.]
Arquivos suplementares

