ЭЛЕКТРОДЫ НА ОСНОВЕ Ni–Co ДЛЯ РЕАКЦИЙ ВЫДЕЛЕНИЯ КИСЛОРОДА В ПРОЦЕССАХ ЩЕЛОЧНОГО ЭЛЕКТРОЛИЗА ВОДЫ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе предложен оригинальный метод получения Ni–Co-электродов и изучено их электрохимическое поведение в качестве анодов в щелочной электролизной ячейке. Установлено, что полученные электроды проявляют каталитическую активность по отношению к реакции выделения кислорода, снижая перенапряжение этого процесса, например при плотности тока 1 А/см2 и температуре 85°C на 390 мВ по сравнению с Ni-электродом. Преимущество полученных электродов заключается в отсутствии на их поверхности какого-либо покрытия, которое может отслоиться в процессе эксплуатации, приводя к необратимой деградации электрода. Исследуемые Ni–Co-электроды тестировались в 6 М KOH при температуре 85°C и плотности тока 300 мА/см2, т. е. в условиях, максимально приближенных к рабочим для щелочных электролизеров в течение 500 ч. Показано, что после испытаний поверхность электродов оставалась без видимых признаков деградации, таких как растрескивание, расслаивание, и прочих механических повреждений. Вместе с тем на вольт-амперных характеристиках отмечается небольшое, но необратимое увеличение напряжения, что может свидетельствовать о снижении каталитических свойств поверхности электрода.

Об авторах

В. Н. Кулешова

Национальный исследовательский университет “МЭИ”, Москва, Россия

Email: KurochkinSV@mpei.ru

С. В. Курочкина

Национальный исследовательский университет “МЭИ”, Москва, Россия

Email: KurochkinSV@mpei.ru

Н. В. Кулешова

Национальный исследовательский университет “МЭИ”, Москва, Россия

Email: KurochkinSV@mpei.ru

М. А. Климова

Национальный исследовательский университет “МЭИ”, Москва, Россия

Email: KurochkinSV@mpei.ru

О. Ю. Григорьева

Национальный исследовательский университет “МЭИ”, Москва, Россия

Email: oksgrig@yandex.ru

Список литературы

  1. Sebbahi, S., Assila, A., Belghiti, A.A., Laasri, S., Kaya, S., Hlil, El K., Rachidi, S., and Hajjaji, A., A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production, Intern. J. Hydrogen Energy, 2024, vol. 82 (11), p. 583. doi: 10.1016/j.ijhydene.2024.07.428
  2. Kraglund, M.R., Carmo, M., Schiller, G., Ansar, S.A., Aili, D., Christensen, E., and Jensen, J.O., Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers, Energy & Environmental Science, 2019, vol. 12, p. 3313. doi: 10.1039/C9EE00832B
  3. El-Shafie, M.I., Hydrogen production by water electrolysis technologies: A review, Results in Engineering, 2023, vol. 20, p. 101426. doi: 10.1016/j.rineng.2023.101426
  4. Emam, A.S., Hamdan, M., Abu-Nabah, B.A., and Elnajjar, E., A review on recent trends, challenges, and innovations in alkaline water electrolysis, Intern. J. Hydrogen Energy, 2024, vol. 20, p. 599. doi: 10.1016/j.ijhydene.2024.03.238
  5. Arsad, S.R., Arsad, A.Z., Ker, P.J., Hannan, M.A., Tang, S.G., Goh, S.M., and Mahlia, I.T.M., Recent advancement in water electrolysis for hydrogen production: A comprehensive bibliometric analysis and technology updates, Intern. J. Hydrogen Energy, 2024, vol. 60, p. 780. doi: 10.1016/j.ijhydene.2024.02.184
  6. Zou, Z., Dastafkan, K., Shao, Y., Zhao, C., and Wang, Q., Electrocatalysts for alkaline water electrolysis at ampere-level current densities: a review, Intern. J. Hydrogen Energy, 2024, vol. 51, р. 667. doi: 10.1016/j.ijhydene.2023.07.026
  7. Кулешов, Н.В., Коровин, Н.В., Удрис, Е.Я., Кулешов, В.Н., Бахин, А.Н. Разработка новых электрокатализаторов для низкотемпературного электролиза воды. Электрохимическая энергетика. 2012. Т. 12. № 2. С. 51. [Kuleshov, N.V., Korovin, N.V., Udris, E. Ya., Kuleshov, V.N., and Bakhin, A.N., Development of New Electrocatalysts for Low-Temperature Water Electrolysis, Electrochemical Power Engineering., 2012, vol. 12, no. 2, p. 51.]
  8. Lee, H.I., Cho, H., Kim, M., Lee, J.H., Lee, C., Lee, S., Kim, S., Kim, C., Yi, K.B., and Cho, W., The structural effect of electrode mesh on hydrogen evolution reaction performance for alkaline water electrolysis, Frontiers in Chemistry, 2021, vol. 9, p. 787787. doi: 10.3389/fchem.2021.787787
  9. Seetharaman, S., Balaji, R., Ramya, K., Dhathathreyan, K.S., and Velan, M., Electrochemical behaviour of nickel-based electrodesfor oxygen evolution reaction in alkaline water electrolysis, Ionics, 2014, vol. 20, p. 713.
  10. Schalenbach, M., Kasian, O., and Mayrhofer, K.J.J., An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation, Intern. J. Hydrogen Energy, 2018, vol. 43, p. 11932. doi: 10.1016/j.ijhydene.2018.04.219
  11. Elsharkawy, S., Kutyła, D., Marzec, M.M., and Zabinski, P., Electrodeposition of hydrophobic Ni thin films from different baths under the influence of the magnetic field as electrocatalysts for hydrogen production, Intern. J. Hydrogen Energy, 2024, vol. 61, p. 873. DOI: https://doi.org/10.1016/j.ijhydene.2024.03.045
  12. Chen, M. and Guan, J., Achievements and challenges in cobalt-based catalysts for water electrolysis, Chem. Eng. J., 2024, vol. 500, p. 157080. doi: 10.1016/j.cej.2024.157080
  13. Yang, F., Dong, G., Meng, L., Liu, L., Liu, X., Zhang, Z., Zhao, M., and Zhang, W., One-step electrodeposition of bifunctional MnCoPi electrocatalysts with wrinkled globular-flowers-like structure for highly efficient electrocatalytic water splitting, Intern. J. Hydrogen Energy, 2024, vol. 77, p. 589. doi: 10.1016/j.ijhydene.2024.06.235
  14. Guo, D., Wen, L., T., and Wang, Li, X., Electrodeposition synthesis of cobalt-molybdenum bimetallic phosphide on nickel foam for efficient water splitting, J. Colloid and Interface Sci., 2024, vol. 659, p. 707. doi: 10.1016/j.jcis.2023.09.173
  15. Lin, Y., Zhang, D., and Gong, Y., Ultralow ruthenium loading Cobalt-molybdenum binary alloy as highly efficient and super-stable electrocatalyst for water splitting, Appl. Surface Sci., 2021, vol. 541, p. 148518. doi: 10.1016/j.apsusc.2020.148518
  16. Liu, X., Guo, R., Kun, N., Xia, F., Niu, C., Wen, B., Meng, J., Wu, P., Wu, J., Wu, X., and Mai, L., Reconstruction-determined alkaline water electrolysis at industrial temperatures, Adv. Mater., 2020, vol. 32, p. 1. doi: 10.1002/adma.202001136
  17. MI, J. and Sun, X., Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review, J. Power Sources, 2018, vol. 400, p. 31. doi: 10.1016/j.jpowsour.2018.07.125
  18. Jin, H., Ruqia, B., Park, Y., Kim, H.J., Oh, H., Choi, S., and Lee, K., Nanocatalyst design for long- term operation of proton/anion exchange membrane water electrolysis, Adv. Energy Mater., 2021, vol. 11, p. 1. doi: 10.1002/aenm.202003188
  19. Kuleshov, N.V., Kuleshov, V.N, Dovbysh, S.A., Kurochkin, S.V., Udris, E.Ya., and Slavnov, Yu.A., Polysulfone-based polymeric diaphragms for electrochemical devices with alkaline electrolyte, Russ. J. Appl. Chem., 2018, vol. 91, p. 930. doi: 10.1134/S1070427218060083
  20. Кулешов, В.Н., Кулешов, Н.В., Курочкин, С.В., Григорьева, О.Ю. Синтез и исследование электродно-диафрагменных блоков для щелочного электролиза воды. Электрохимия. 2022. Т. 58. С. 253. [Kuleshov, V.N., Kuleshov, N.V., Kurochkin, S.V., and Grigor’eva, O.Yu., Synthesis and Investigation of Electrode–Diaphragm Assemblies for Alkaline Water Electrolysis, Russ. J. Electrochem., 2022, vol. 58, p. 253.] doi: 10.1134/S1023193522060052
  21. Кулешов, В.Н., Курочкин, С.В., Кулешов, Н.В., Гаврилюк, А.А., Пушкарева, И.В., Климова, М.А., Григорьева О.Ю. Щелочной электролиз воды с анионообменными мембранами и катализаторами на основе никеля. Электрохимия. 2023. Т. 59. С. 735. [Kuleshov, V.N., Kurochkin, S.V., Kuleshov, N.V., Gavriluk, A.A., Pushkareva, I.V., Klimova, M.A., and Grigorieva, O.Y., Alkaline Water Electrolysis With Anion-Exchange Membranes And Different Types Of Electrodes, Russ. J. Electrochem., 2023, vol. 59, p. 915.] doi: 10.31857/S0424857023110105
  22. Якименко, Л.М., Модылевская, И.Д., Ткачек З.А. Электролиз воды. М.: Химия, 1970. С. 63. [Yakimenko, L.M., Modylevskaya, I.D., and Tkachek, Z.A. Electrolysis of water (in Russian), Moscow: Khimiya, 1970. p. 63.]

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».