ELECTROCHEMICAL PROPERTIES OF COMPOSITE METAL-POLYMER MATERIAL BASED ON Ni AND PEDOT:PSS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, the possibility of using a composite material consisting of PEDOT:PSS and a network of oriented nickel fibers distributed in a polymer matrix as an electrode for alternative energy devices was investigated. The correlation between the electrochemical and optoelectric characteristics of the GC/PEDOT:PSS and GC/NiSFs/PEDOT:PSS electrodes was studied using electrochemical methods (cyclic voltammetry, electrochemical impedance spectroscopy). The mechanisms of electrochemical reactions in the GC/PEDOT:PSS and GC/NiSFs/PEDOT:PSS systems were studied using cyclic voltammetry at different scan rates, and the stages limiting these processes were determined. Based on the oxidation and reduction potentials for the developed electrodes, the band gap was calculated. The band gap value Eg for GC/PEDOT:PSS was 1.34 eV. Introducing the oriented nickel fiber network into the PEDOT:PSS matrix resulted in a slight decrease in the band gap of the GC/NiSFs/PEDOT:PSS electrode, which was 1.31 eV. This confirms that the optical properties of the material remain practically unchanged. The electrical properties of the GC/PEDOT:PSS and GC/NiSFs/PEDOT:PSS electrodes were studied using impedance spectroscopy. The obtained results show that the inclusion of a nickel fiber network in the polymer film leads to a slowdown in the charge transfer process in the GC/NiSFs/PEDOT:PSS system, which is confirmed by an increase in the charge transfer resistance Rct to 170.9 Ohm compared to 131.5 Ohm for pure GC/PEDOT:PSS. Based on the analysis of the obtained data, it can be stated that the composite material based on PEDOT:PSS and a network of oriented nickel fibers is promising for use in optoelectronic devices and energy systems.

About the authors

G. R Nizameeva

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technological University

Email: guliya.riv@gmail.com
Kazan, Russia; Kazan, Russia

E. M Lebedeva

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technological University

Kazan, Russia; Kazan, Russia

V. V Kuznetsova

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technical University named after A. N. Tupolev-KAI

Kazan, Russia; Kazan, Russia

I. R Nizameev

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technical University named after A. N. Tupolev-KAI

Email: irek.rash@gmail.com
Kazan, Russia; Kazan, Russia

References

  1. Liu, L., Yang, H., Zhang, Z., Wang, Y., Piao, J., Dai, Y., Cai, B., Shen, W., Cao K., and Chen, S., Photopatternable and highly conductive PEDOT:PSS electrodes for flexible perovskite light-emitting diodes, ACS Appl. Mater. Interfaces, 2023, vol. 15, no. 17, p. 21344.
  2. Gribkova, O.L., Kabanova, V.A., Kormshchikov, I.D., Tameev, A.R., and Nekrasov, A.A., Electrodeposition of Photosensitive Layers Based on Conducting Polymers and Zinc Phthalocyaninate, Their Structure and Photoelectrical Properties, Russ. J. Electrochem., 2024, vol. 60, no. 6, p. 448.
  3. Sharma, S., Singh, K., Singh, B., Shriwastava, S., Dwivedi, Y., and Tripathi, C.C., Investigation of voltage-dependent luminance of flexible FLG, rGO/PEDOT:PSS TCEs based organic light emitting diode, J. Optics, 2024, p. 1.
  4. Apraksin, R.V., Eliseeva, S.N., Kamenskii, M.A., Tolstopyatova, E.G., Lang, G.G., and Kondrat’ev, V.V., Impedance of LiFe 0.4 Mn 0.6 PO 4 electrodes with combined conducting polymer binder of PEDOT:PSS and carboxymethyl cellulose, Russ. J. Electrochem., 2019, vol. 55, p. 1047.
  5. Su, Z., Jin, Y., Wang, H., Li, Z., Huang, L., and Wang, H., PEDOT:PSS and its composites for flexible supercapacitors, ACS Appl. Energy Mater., 2022, vol. 5, no. 10, p. 11915.
  6. Araujo-Pérez, D.J., García-González, L., Nolasco-Montaño, J.C., Flores-Ramirez, N., Hernández-Cristobal, O., Castro-Carranza, A., Hernández-Torres, J., and Zamora-Peredo, L., Comparison between TiO2 nanomaterials reinforced with PEDOT:PSS and carbon nanotubes, synthesized by a simple hydrothermal method for electrochemical capacitors, MRS Adv., 2023, vol. 8, no. 24, p. 1429.
  7. Jiang, W., Han, Y., Yu, X., Xu, Y., Wang, L., Zhang, X., Qin, X., Zhu, Y., and Zhang, Y., PEDOT:PSS for reinforced performances of Co/Ni-MOF as flexible supercapacitor electrodes, J. Electron. Mater., 2023, vol. 52, no. 8, p. 5543.
  8. Gao, N., Yu, J., Tian, Q., Shi, J., Zhang, M., Chen, S., and Zang, L., Application of PEDOT:PSS and its composites in electrochemical and electronic chemosensors, Chemosensors, 2021, vol. 9, no. 4, p. 79.
  9. Gribkova, O.L., Sayarov, I.R., Kabanova, V.A., Nekrasov, A.A., and Tameev, A.R., Electrodeposited Composite of Poly-3, 4-Ethylenedioxythiophene with Fullerenol Photoactive in the Near-IR Range, Russ. J. Electrochem., 2024, vol. 60, no. 10, p. 813.
  10. Kumar, S.P., Manjunatha, R., Venkatesha, T.V., and Suresh, G.S., Polystyrene sulphonate wrapped multiwalled carbon nanotubes modified graphite electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, Russ. J. Electrochem., 2013, vol. 49, no. 4, p. 299.
  11. Wu, Y., Liu, J., Hu, Z., Zhou, W., Wu, W., Wang, J., Ao, Y, and Li, M., Structurally tunable conductive wood sponge incorporated with PEDOT:PSS for enhanced piezoresistive sensor applications, Cellulose, 2024, vol. 31, no. 18, p. 10995.
  12. Bhujel, R., Rai, S., Biswas, J., and Swain, B.P., Investigation of structural, chemical bonding and electrochemical performance of rGO–PEDOT:PSS nanocomposites, Bull. Mater. Sci., 2023, vol. 46, no. 4, p. 204.
  13. Jin, X.Z., Li, H., Wang, Y., Yang, Z.Y., Qi, X.D., Yang, J.H., and Wang, Y., Ultraflexible PEDOT:PSS/helical carbon nanotubes film for all-in-one photothermoelectric conversion, ACS Appl. Mater. Interfaces, 2022, vol. 14, no. 23, p. 27083.
  14. Yan, C., Zhao, L., and Yu, S., High-performance PEDOT:PSS/Cu mesh flexible transparent conductors with enhanced durability, adhesion and stability, J. Mater. Sci.: Mater. Electron., 2024, vol. 35, no. 16, p. 1040.
  15. Ong, G.L., Ong, T.S., Yap, S.L., Liaw, D.J., Tou, T.Y., Yap, S.S., and Nee, C.H., A brief review of nanoparticles-doped PEDOT:PSS nanocomposite for OLED and OPV, Nanotechnol. Rev., 2022, vol. 11, no. 1, p. 1870.
  16. Aleksandrova, M., Videkov, V., Ivanova, R., Singh, A.K., and Thool, G.S., Highly flexible, conductive and transparent PEDOT:PSS/Au/PEDOT:PSS multilayer electrode for optoelectronic devices, Mater. Lett., 2016, vol. 174, p. 204.
  17. Wu, F., Shi, H., Gao, Y., Cheng, L., Gu, T., Liu, T., Chen, Z., and Fan, W., Wet-spun Ag/PEDOT:PSS composite fibers for high-sensitive SERS sensing and high electrical conducting, Sci. Rep., vol. 14, no. 1, p. 29219.
  18. Patil, D.S., Pawar, S.A., Hwang, J., Kim, J.H., Patil, P.S., and Shin, J.C., Silver incorporated PEDOT:PSS for enhanced electrochemical performance, J. Ind. Eng. Chem., 2016, vol. 42, p. 113.
  19. Fu, H., Jin, Y., Ou, H., Huang, P., Liu, C., Luo, Y., and Xiao, Z., High-performance Ag nanowires/PEDOT:PSS composite electrodes for PVDF-HFP piezoelectric nanogenerators, J. Mater. Sci.: Mater. Electron., 2021, vol. 32, p. 21178.
  20. Liang, J., Sheng, H., Wang, Q., Yuan, J., Zhang, X., Su, Q., Xie, E., Lan, W., and Zhang, C.J., PEDOT:PSS-glued MoO3 nanowire network for all-solid-state flexible transparent supercapacitors, Nanoscale Adv., 2021, vol. 3, no. 12, p. 3502.
  21. Nizameev, I.R., Nizameeva, G.R., Faizullin, R.R., and Kadirov, M.K., Oriented Nickel Nanonetworks and Their Submicron Fibres as a Basis for a Transparent Electrically Conductive Coating, ChemPhysChem, 2021, vol. 22, no. 3, p. 288.
  22. Nizameev, I.R., Nizameeva, G.R., and Kadirov, M.K., Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly (3, 4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid, Nanomaterials, 2023, vol. 13, no. 5, p. 831.
  23. Plekhanova, Y., Tarasov, S., and Reshetilov, A., Use of PEDOT:PSS/Graphene/Nafion composite in biosensors based on acetic acid bacteria, Biosensors, 2021, vol. 11, no. 9, p. 332.
  24. Yang, Q., Pang, S.K., and Yung, K.C., Study of PEDOT–PSS in carbon nanotube/conducting polymer composites as supercapacitor electrodes in aqueous solution, J. Electroanal. Chem., vol. 728, p. 140.
  25. Deller, A.E., Hryniewicz, B.M., Pesqueira, C., Horta, R.P., da Silva, B.J.G., Weheabby, S., Al-Hamry, A., Kanoun, O., and Vidotti, M., PEDOT:PSS/AuNPs-based composite as voltammetric sensor for the detection of pirimicarb, Polym., 2023, vol. 15, no. 3, p. 739.
  26. Sarkar, S., Bhowal, A.C., Kandimalla, R., and Kundu, S., Structural and electrical behaviours of PEDOT:PSS thin films in presence of negatively charged gold and silver nanoparticles: a green synthesis approach, Synth. Met., 2021, vol. 279, p. 116848.
  27. Tzaneva, B., Aleksandrova, M., Mateev, V., Stefanov, B., and Iliev, I., Electrochemical Properties of PEDOT:PSS/Graphene Conductive Layers in Artificial Sweat, Sensors, 2023, vol. 24, no. 1, p. 39.
  28. Srivastava, A., Sharma, D., and Srivastava, S.K., Impedance spectroscopy analysis to probe the role of interface properties of surface micro-engineered PEDOT:PSS/n-Si solar cells, Org. Electron., 2023, vol. 119, p. 106817.
  29. Khan, S.A., Patel, S., and Shukla, P., Electrochemical impedance and cyclic voltammetry analysis of PEDOT:PSS-AgNPs composites, MRS Adv., 2024, p. 1.
  30. Sinan, N. and Unur, E., PEDOT:PSS enhanced electrochemical capacitive performance of graphene-templated δ-MnO2, J. Electrochem. Sci. Technol., 2020, vol. 11, no. 1, p. 50.
  31. Tian, F., Yu, J., Wang, W., Zhao, D., Cao, J., Zhao, Q., Wang, F., Yang, H., Wu, Z., Xu, J., and Lu, B., Design of adhesive conducting PEDOT-MeOH: PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes, J. Colloid Interface Sci., 2023, vol. 638, p. 339.
  32. Wang, Z., Xu, J., Yao, Y., Zhang, L., Wen, Y., Song, H., and Zhu, D., Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors, Sensors and Actuators B: Chem., 2014, vol. 196, p. 357.
  33. Jewłoszewicz, B., Bogdanowicz, K.A., Przybył, W., Iwan, A., and Plebankiewicz, I., PEDOT:PSS in water and toluene for organic devices–Technical approach, Polym., 2020, vol. 12, no. 3, p. 565.
  34. Kalagi, S.S. and Patil, P.S., Secondary electrochemical doping level effects on polaron and bipolaron bands evolution and interband transition energy from absorbance spectra of PEDOT:PSS thin films, Synthetic Metals, 2016, vol. 220, p. 661.
  35. Li, Y., Liu, W., Gao, X., Zou, T., Deng, P., Zhao, J., Zhang, T., Chen, Y., He, L., Shao, L., Yan, Z., and Zhang, X., Carbon nanomaterials-PEDOT:PSS based electrochemical ionic soft actuators: Recent development in design and applications, Sensors and Actuators A: Phys., 2023, vol. 354, p. 114277.
  36. Bhujel, R., Rai, S., Deka, U., Sarkar, G., Biswas, J., and Swain, B.P., Bandgap engineering of PEDOT:PSS/rGO a hole transport layer for SiNWs hybrid solar cells, Bulletin of Mater. Sci., 2021, vol. 44, p. 1.
  37. Arjun, K., Amaljith, C.K., and Karthikeyan, B., Enhancing saturable absorption in a Au-decorated MoS2/PEDOT:PSS nanocomposite through plasmon resonance and Pauli blocking, Phys. Chem. Chem. Physics, 2024, vol. 26, no. 12, p. 9645.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).