ЭЛЕКТРОХИМИЧЕСКИЕ СВОЙСТВА КОМПОЗИТНОГО МЕТАЛЛ-ПОЛИМЕРНОГО МАТЕРИАЛА НА ОСНОВЕ Ni И PEDOT:PSS

Обложка
  • Авторы: Низамеева Г.Р1,2, Лебедева Э.М1,2, Кузнецова В.В1,3, Низамеев И.Р1,3
  • Учреждения:
    1. Институт органической и физической химии им. А. Е. Арбузова – обособленное структурное подразделение ФИЦ КазНЦ РАН
    2. Казанский национальный исследовательский технологический университет
    3. Казанский национальный исследовательский технический университет им. А. Н. Туполева
  • Выпуск: Том 61, № 9 (2025)
  • Страницы: 470–480
  • Раздел: Специальный выпуск “Электрохимия на ХХII Менделеевском съезде общей и прикладной химии”, октябрь 2024 г., Сириус, РФ
  • URL: https://journals.rcsi.science/0424-8570/article/view/376646
  • DOI: https://doi.org/10.7868/S3034618525090041
  • ID: 376646

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В данной работе исследована возможность применения композитного материала, состоящего из поли(3,4-этилендиокситиофен) полистиролсульфоната (PEDOT:PSS) и сети ориентированных никелевых волокон (NiSFs), распределенных в полимерной матрице, в качестве электрода для устройств альтернативной энергетики. Комплексом электрохимических методов (циклическая вольтамперометрия, спектроскопия электрохимического импеданса) исследована взаимосвязь между электрохимическими и оптико-электрическими характеристиками электродов СУ/PEDOT:PSS и СУ/NiSFs/PEDOT:PSS. Методом циклической вольтамперометрии при различных скоростях сканирования изучены механизмы электрохимических реакций в системах СУ/PEDOT:PSS и СУ/NiSFs/PEDOT:PSS, а также определены стадии, лимитирующие эти процессы. На основе потенциалов окисления и восстановления для разработанных электродов рассчитана ширина запрещенной зоны. Значение ширины запрещенной зоны Eg для СУ/PEDOT:PSS составила 1.34 эВ. Внедрение сети ориентированных волокон никеля в матрицу PEDOT:PSS привело к незначительному уменьшению ширины запрещенной зоны системы СУ/NiSFs/PEDOT:PSS, которая составила 1.31 эВ. Это подтверждает, что оптические свойства материала остаются практически неизменными. Методом импедансной спектроскопии изучены электрические свойства электродов СУ/PEDOT:PSS и СУ/NiSFs/PEDOT:PSS. Полученные результаты показывают, что включение сети волокон никеля в пленку полимера приводит к замедлению процесса переноса заряда в системе СУ/NiSFs/PEDOT:PSS, что подтверждается увеличением сопротивления переносу заряда Rct до 171 Ом по сравнению с 131 Ом для чистого СУ/PEDOT:PSS. На основе анализа полученных данных можно утверждать, что композитный материал на основе PEDOT:PSS и сети ориентированных никелевых волокон является перспективным для использования в оптоэлектронных устройствах и энергетических системах.

Об авторах

Г. Р Низамеева

Институт органической и физической химии им. А. Е. Арбузова – обособленное структурное подразделение ФИЦ КазНЦ РАН; Казанский национальный исследовательский технологический университет

Email: guliya.riv@gmail.com
Казань, Россия; Казань, Россия

Э. М Лебедева

Институт органической и физической химии им. А. Е. Арбузова – обособленное структурное подразделение ФИЦ КазНЦ РАН; Казанский национальный исследовательский технологический университет

Казань, Россия; Казань, Россия

В. В Кузнецова

Институт органической и физической химии им. А. Е. Арбузова – обособленное структурное подразделение ФИЦ КазНЦ РАН; Казанский национальный исследовательский технический университет им. А. Н. Туполева

Казань, Россия; Казань, Россия

И. Р Низамеев

Институт органической и физической химии им. А. Е. Арбузова – обособленное структурное подразделение ФИЦ КазНЦ РАН; Казанский национальный исследовательский технический университет им. А. Н. Туполева

Email: irek.rash@gmail.com
Казань, Россия; Казань, Россия

Список литературы

  1. Liu, L., Yang, H., Zhang, Z., Wang, Y., Piao, J., Dai, Y., Cai, B., Shen, W., Cao K., and Chen, S., Photopatternable and highly conductive PEDOT:PSS electrodes for flexible perovskite light-emitting diodes, ACS Appl. Mater. Interfaces, 2023, vol. 15, no. 17, p. 21344.
  2. Gribkova, O.L., Kabanova, V.A., Kormshchikov, I.D., Tameev, A.R., and Nekrasov, A.A., Electrodeposition of Photosensitive Layers Based on Conducting Polymers and Zinc Phthalocyaninate, Their Structure and Photoelectrical Properties, Russ. J. Electrochem., 2024, vol. 60, no. 6, p. 448.
  3. Sharma, S., Singh, K., Singh, B., Shriwastava, S., Dwivedi, Y., and Tripathi, C.C., Investigation of voltage-dependent luminance of flexible FLG, rGO/PEDOT:PSS TCEs based organic light emitting diode, J. Optics, 2024, p. 1.
  4. Apraksin, R.V., Eliseeva, S.N., Kamenskii, M.A., Tolstopyatova, E.G., Lang, G.G., and Kondrat’ev, V.V., Impedance of LiFe 0.4 Mn 0.6 PO 4 electrodes with combined conducting polymer binder of PEDOT:PSS and carboxymethyl cellulose, Russ. J. Electrochem., 2019, vol. 55, p. 1047.
  5. Su, Z., Jin, Y., Wang, H., Li, Z., Huang, L., and Wang, H., PEDOT:PSS and its composites for flexible supercapacitors, ACS Appl. Energy Mater., 2022, vol. 5, no. 10, p. 11915.
  6. Araujo-Pérez, D.J., García-González, L., Nolasco-Montaño, J.C., Flores-Ramirez, N., Hernández-Cristobal, O., Castro-Carranza, A., Hernández-Torres, J., and Zamora-Peredo, L., Comparison between TiO2 nanomaterials reinforced with PEDOT:PSS and carbon nanotubes, synthesized by a simple hydrothermal method for electrochemical capacitors, MRS Adv., 2023, vol. 8, no. 24, p. 1429.
  7. Jiang, W., Han, Y., Yu, X., Xu, Y., Wang, L., Zhang, X., Qin, X., Zhu, Y., and Zhang, Y., PEDOT:PSS for reinforced performances of Co/Ni-MOF as flexible supercapacitor electrodes, J. Electron. Mater., 2023, vol. 52, no. 8, p. 5543.
  8. Gao, N., Yu, J., Tian, Q., Shi, J., Zhang, M., Chen, S., and Zang, L., Application of PEDOT:PSS and its composites in electrochemical and electronic chemosensors, Chemosensors, 2021, vol. 9, no. 4, p. 79.
  9. Gribkova, O.L., Sayarov, I.R., Kabanova, V.A., Nekrasov, A.A., and Tameev, A.R., Electrodeposited Composite of Poly-3, 4-Ethylenedioxythiophene with Fullerenol Photoactive in the Near-IR Range, Russ. J. Electrochem., 2024, vol. 60, no. 10, p. 813.
  10. Kumar, S.P., Manjunatha, R., Venkatesha, T.V., and Suresh, G.S., Polystyrene sulphonate wrapped multiwalled carbon nanotubes modified graphite electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, Russ. J. Electrochem., 2013, vol. 49, no. 4, p. 299.
  11. Wu, Y., Liu, J., Hu, Z., Zhou, W., Wu, W., Wang, J., Ao, Y, and Li, M., Structurally tunable conductive wood sponge incorporated with PEDOT:PSS for enhanced piezoresistive sensor applications, Cellulose, 2024, vol. 31, no. 18, p. 10995.
  12. Bhujel, R., Rai, S., Biswas, J., and Swain, B.P., Investigation of structural, chemical bonding and electrochemical performance of rGO–PEDOT:PSS nanocomposites, Bull. Mater. Sci., 2023, vol. 46, no. 4, p. 204.
  13. Jin, X.Z., Li, H., Wang, Y., Yang, Z.Y., Qi, X.D., Yang, J.H., and Wang, Y., Ultraflexible PEDOT:PSS/helical carbon nanotubes film for all-in-one photothermoelectric conversion, ACS Appl. Mater. Interfaces, 2022, vol. 14, no. 23, p. 27083.
  14. Yan, C., Zhao, L., and Yu, S., High-performance PEDOT:PSS/Cu mesh flexible transparent conductors with enhanced durability, adhesion and stability, J. Mater. Sci.: Mater. Electron., 2024, vol. 35, no. 16, p. 1040.
  15. Ong, G.L., Ong, T.S., Yap, S.L., Liaw, D.J., Tou, T.Y., Yap, S.S., and Nee, C.H., A brief review of nanoparticles-doped PEDOT:PSS nanocomposite for OLED and OPV, Nanotechnol. Rev., 2022, vol. 11, no. 1, p. 1870.
  16. Aleksandrova, M., Videkov, V., Ivanova, R., Singh, A.K., and Thool, G.S., Highly flexible, conductive and transparent PEDOT:PSS/Au/PEDOT:PSS multilayer electrode for optoelectronic devices, Mater. Lett., 2016, vol. 174, p. 204.
  17. Wu, F., Shi, H., Gao, Y., Cheng, L., Gu, T., Liu, T., Chen, Z., and Fan, W., Wet-spun Ag/PEDOT:PSS composite fibers for high-sensitive SERS sensing and high electrical conducting, Sci. Rep., vol. 14, no. 1, p. 29219.
  18. Patil, D.S., Pawar, S.A., Hwang, J., Kim, J.H., Patil, P.S., and Shin, J.C., Silver incorporated PEDOT:PSS for enhanced electrochemical performance, J. Ind. Eng. Chem., 2016, vol. 42, p. 113.
  19. Fu, H., Jin, Y., Ou, H., Huang, P., Liu, C., Luo, Y., and Xiao, Z., High-performance Ag nanowires/PEDOT:PSS composite electrodes for PVDF-HFP piezoelectric nanogenerators, J. Mater. Sci.: Mater. Electron., 2021, vol. 32, p. 21178.
  20. Liang, J., Sheng, H., Wang, Q., Yuan, J., Zhang, X., Su, Q., Xie, E., Lan, W., and Zhang, C.J., PEDOT:PSS-glued MoO3 nanowire network for all-solid-state flexible transparent supercapacitors, Nanoscale Adv., 2021, vol. 3, no. 12, p. 3502.
  21. Nizameev, I.R., Nizameeva, G.R., Faizullin, R.R., and Kadirov, M.K., Oriented Nickel Nanonetworks and Their Submicron Fibres as a Basis for a Transparent Electrically Conductive Coating, ChemPhysChem, 2021, vol. 22, no. 3, p. 288.
  22. Nizameev, I.R., Nizameeva, G.R., and Kadirov, M.K., Doping of Transparent Electrode Based on Oriented Networks of Nickel in Poly (3, 4-Ethylenedioxythiophene) Polystyrene Sulfonate Matrix with P-Toluenesulfonic Acid, Nanomaterials, 2023, vol. 13, no. 5, p. 831.
  23. Plekhanova, Y., Tarasov, S., and Reshetilov, A., Use of PEDOT:PSS/Graphene/Nafion composite in biosensors based on acetic acid bacteria, Biosensors, 2021, vol. 11, no. 9, p. 332.
  24. Yang, Q., Pang, S.K., and Yung, K.C., Study of PEDOT–PSS in carbon nanotube/conducting polymer composites as supercapacitor electrodes in aqueous solution, J. Electroanal. Chem., vol. 728, p. 140.
  25. Deller, A.E., Hryniewicz, B.M., Pesqueira, C., Horta, R.P., da Silva, B.J.G., Weheabby, S., Al-Hamry, A., Kanoun, O., and Vidotti, M., PEDOT:PSS/AuNPs-based composite as voltammetric sensor for the detection of pirimicarb, Polym., 2023, vol. 15, no. 3, p. 739.
  26. Sarkar, S., Bhowal, A.C., Kandimalla, R., and Kundu, S., Structural and electrical behaviours of PEDOT:PSS thin films in presence of negatively charged gold and silver nanoparticles: a green synthesis approach, Synth. Met., 2021, vol. 279, p. 116848.
  27. Tzaneva, B., Aleksandrova, M., Mateev, V., Stefanov, B., and Iliev, I., Electrochemical Properties of PEDOT:PSS/Graphene Conductive Layers in Artificial Sweat, Sensors, 2023, vol. 24, no. 1, p. 39.
  28. Srivastava, A., Sharma, D., and Srivastava, S.K., Impedance spectroscopy analysis to probe the role of interface properties of surface micro-engineered PEDOT:PSS/n-Si solar cells, Org. Electron., 2023, vol. 119, p. 106817.
  29. Khan, S.A., Patel, S., and Shukla, P., Electrochemical impedance and cyclic voltammetry analysis of PEDOT:PSS-AgNPs composites, MRS Adv., 2024, p. 1.
  30. Sinan, N. and Unur, E., PEDOT:PSS enhanced electrochemical capacitive performance of graphene-templated δ-MnO2, J. Electrochem. Sci. Technol., 2020, vol. 11, no. 1, p. 50.
  31. Tian, F., Yu, J., Wang, W., Zhao, D., Cao, J., Zhao, Q., Wang, F., Yang, H., Wu, Z., Xu, J., and Lu, B., Design of adhesive conducting PEDOT-MeOH: PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes, J. Colloid Interface Sci., 2023, vol. 638, p. 339.
  32. Wang, Z., Xu, J., Yao, Y., Zhang, L., Wen, Y., Song, H., and Zhu, D., Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors, Sensors and Actuators B: Chem., 2014, vol. 196, p. 357.
  33. Jewłoszewicz, B., Bogdanowicz, K.A., Przybył, W., Iwan, A., and Plebankiewicz, I., PEDOT:PSS in water and toluene for organic devices–Technical approach, Polym., 2020, vol. 12, no. 3, p. 565.
  34. Kalagi, S.S. and Patil, P.S., Secondary electrochemical doping level effects on polaron and bipolaron bands evolution and interband transition energy from absorbance spectra of PEDOT:PSS thin films, Synthetic Metals, 2016, vol. 220, p. 661.
  35. Li, Y., Liu, W., Gao, X., Zou, T., Deng, P., Zhao, J., Zhang, T., Chen, Y., He, L., Shao, L., Yan, Z., and Zhang, X., Carbon nanomaterials-PEDOT:PSS based electrochemical ionic soft actuators: Recent development in design and applications, Sensors and Actuators A: Phys., 2023, vol. 354, p. 114277.
  36. Bhujel, R., Rai, S., Deka, U., Sarkar, G., Biswas, J., and Swain, B.P., Bandgap engineering of PEDOT:PSS/rGO a hole transport layer for SiNWs hybrid solar cells, Bulletin of Mater. Sci., 2021, vol. 44, p. 1.
  37. Arjun, K., Amaljith, C.K., and Karthikeyan, B., Enhancing saturable absorption in a Au-decorated MoS2/PEDOT:PSS nanocomposite through plasmon resonance and Pauli blocking, Phys. Chem. Chem. Physics, 2024, vol. 26, no. 12, p. 9645.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2026

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).