Structure and Electrochemical Properties of Cathode Materials (Na3V2 ‒ xScx(PO4)3) for Sodium-Ion Batteries

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Solid solutions Na3V2 − xScx(PO4)3 (0 < x < 2) are synthesized by the sol-gel method followed by annealing in inert atmosphere. The structure of Na3V2 − xScx(PO4)3 (x = 0.5, 1.2) compounds is studied by the method of powder X-ray diffraction. As the degree of substitution increases, the unit cell parameters and volume tend to increase on retention of the NASICON-type structure. The electrochemical properties of Na3V2 − xScx(PO4)3/C materials as the cathodes for sodium-ion batteries are studied in sodium half-cells in different potential intervals: 2.5−3.8, 2.5−4.5, and 1.0−4.5 V vs. Na/Na+. The charging curves of all materials demonstrate two plateaus: at ≈3.5 and ≈4 V vs. Na/Na+, corresponding to the successive transitions V3+/V4+ and V4+/V5+. However, the high-voltage plateau is reversible at the subsequent discharge only for the Na3V1.5Sc0.5(PO4)3/C material. This allows one to carry out the stable reversible cycling of this material in the potential interval of 1.0−4.5 V vs. Na/Na+ with the capacity higher than 170 mA h g−1, which corresponds to (de)intercalation of three Na+ per formula unit.

About the authors

T. I. Perfilyeva

Faculty of Chemistry, Moscow State University

Email: tatjana.perf@yandex.ru
Moscow, Russia

A. M. Alekseeva

Faculty of Chemistry, Moscow State University

Email: tatjana.perf@yandex.ru
Moscow, Russia

O. A. Drozhzhin

Faculty of Chemistry, Moscow State University

Email: tatjana.perf@yandex.ru
Moscow, Russia

E. V. Antipov

Faculty of Chemistry, Moscow State University; Skolkovo Institute of Science and Technology

Author for correspondence.
Email: tatjana.perf@yandex.ru
Moscow, Russia; Moscow, Russia

References

  1. Tsiropoulos, I., Tarvydas, D., and Lebedeva, N., EUR 29440 EN, Li-ion batteries for mobility and stationary storage applications Scenarios for costs and market growth, Publications Office of the European Union, Luxembourg, 2018, p. 67.
  2. Vaalma, C., Buchholz, D., Weil, M., and Passerini, S., A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater., 2018, vol. 3, p. 18013.
  3. Rajagopalan, R., Zhang, Z., Tang Y., Jia, C., Xiaobo, Ji, and Wang, H., Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials, Energy Storage Materials, 2021, vol. 34, p. 171.
  4. Hong, H.Y.-P., Crystal structures and crystal chemistry in the system Na1 + xZr2SixP3 – xO12, Mater. Res. Bull., 1976, vol. 11, p. 173.
  5. Goodenough, J.B., Hong H.Y.P., and Kafalas, J., Fast Na+-ion transport in skeleton structures, Mater. Res. Bull., 1976, vol. 11, p. 203.
  6. Rajagopalan, R., Chen, B., Zhang, Z., Wu, X.-L., Du, Y. Huang, B., Li, Y., Zong, J., Wang, G.-H., Nam, M., Sindoro, S.X., Dou, H.K., Liu, H., Zhang, Improved Reversibility of Fe3+/Fe4+Redox Couple in Sodium Super Ion Conductor Type Na3Fe2(PO4)3 for Sodium-Ion Batteries, Adv. Mater., 2017, vol. 29, p. 1605694.
  7. Samigullin, R., Drozhzhin, O., and Antipov, E., Comparative Study of the Thermal Stability of Electrode Materials for Li-Ion and Na-Ion Batteries, ACS Appl. Energy Mater., 2022, vol. 5, p. 14.
  8. Wang, J., Wang, Y., Seo, D., Shi, T., Chen, S., Tian, Y., Kim, H., and Ceder, G., A High-Energy NASICON-Type Cathode Material for Na-Ion Batteries, Adv. Energy Mater., 2020, vol. 10, p. 1903968.
  9. Zhang, X., Rui, X., Chen, D., Tan, H., Yang, D., Huang, S., and Yu Y., Na3V2(PO4)3: an advanced cathode for sodium-ion batteries, Nanoscale, 2019, vol. 11, p. 2556.
  10. Saravanan, K., Mason, C., Rudola, A., Wong, K., and Balaya, P., The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3for Sodium Ion Batteries, Adv. Energy Mater., 2013, vol. 3, p. 444.
  11. Jian, Z., Sun, Y., and Ji, X., A new low-voltage plateau of Na3V2(PO4)3as an anode for Na-ion batteries, Chem. Commun., 2015, vol. 51, p. 6381.
  12. Jian, Z., Han, W., Lu, X., Yang, H., Hu, Y.-S., Zhou, J., Zhou, Z., Li, J., Chen, W., Chen, D., and Chen, L., Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries, Energy Mater., 2013, vol. 3, p. 156.
  13. Zhou, W., Xue, L., Lu, X., Gao, H., Li, Y., Xin, S., Fu, G., Cui, Z., Zhu, Y., and Goodenough, J., NaxMV(PO4)3 (M = Mn, Fe, Ni) Structure and Properties for Sodium Extraction, J. Amer. Chem. Soc., 2016, vol. 16, p. 7836.
  14. Zakharkin, M., Drozhzhin, O., Tereshchenko, I., Chernyshov, D., Abakumov, A., Antipov, E., and Stevenson, K., Enhancing Na+ Extraction Limit through High Voltage Activation of the NASICON-Type Na4MnV(PO4)3 Cathode, ACS Appl. Energy Mater., 2018, vol. 1, p. 5842.
  15. Zakharkin, M., Drozhzhin, O., Ryazantsev, S., Chernyshov, D., Kirsanova,M., Mikheev, I., Pazhetnov, E., Antipov, E., and Stevenson, K., Electrochemical properties and evolution of the phase transformation behavior in the NASICON-type Na3 + xMnxV2 – x(PO4)3(0 ≤ ≤ x ≤ 1) cathodes for Na-ion batteries, J. Power Sources., 2020, vol. 470, p. 228231.
  16. Aragón, M.J., Lavela, P., Alcántara, R., and Tirado, J.L., Effect of aluminum doping on carbon loaded Na3V2(PO4)3as cathode material for sodium-ion batteries, Electrochim. Acta, 2015, vol. 180, p. 824.
  17. Wang, Q., Zhao, Y., Gao, J., Geng, H., Li, J., and Jin, H., Triggering the Reversible Reaction of V3+/V4+/V5+in Na3V2(PO4)3by Cr3+ Substitution, ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 50315.
  18. Liu, R., Xu, G., Li, Q., Zheng, S., Zheng, G., Gong, Z., Li, Y., Kruskop, E., Fu, R., Chen, Z., Amine, K., and Yang, Y., Exploring Highly Reversible 1.5-Electron Reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 Cathode for Sodium-Ion Batteries, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 43639.
  19. Lalère, F., Seznec, V., Courty, M., David, R., Chotard, J.N., and Masquelier, C., Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution, J. Mater. Chem. A, 2015, vol. 3, p. 16198.
  20. Inoishi, A., Yoshioka, Y., Zhao, L., Kitajou, A., and Okada, S., Improvement in the Energy Density of Na3V2(PO4)3 by Mg Substitution, ChemElectroChem, 2017, vol. 4, p. 2755.
  21. Singh, B., Wang, Z., Park, S., Sai Gautam, G., Chotard, J.-N., Croguennec, L., Carlier, D., Cheetham, A.K., Masquelier, C., and Canepa P., A Chemical Map of NASICON Electrode Materials for Sodium-ion Batteries, J. Mater. Chem. A, 2021, vol. 9, p. 281.
  22. Boivin, E., Chotard, J.-N., Masquelier, C., and Croguennec, L., Towards Reversible High-Voltage Multi-Electron Reactions in Alkali-Ion Batteries Using Vanadium Phosphate Positive Electrode Materials, Molecules, 2021, vol. 26, p. 1428.
  23. Perfilyeva, T., Drozhzhin, O., Alekseeva, A., Zakharkin, M., Mironov, A., Mikheev, I., Bobyleva, Z., Marenko, A., Marikutsa, A., Abakumov, A., and Antipov, E., Complete Three-Electron Vanadium Redox in NASICON-Type Na3VSc(PO4)3 Electrode Material for Na-Ion Batteries, J. Electrochem. Soc., 2021, vol. 168, p. 110550.
  24. Shannon, R., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, ActaCryst., 1976, vol. A32, p. 751.
  25. STOE Win XPOW, Version 1.2 (27-Jul-2001), 2000 STOE, Cie GmbH, Hilpert str. 10, D64295 Darmstadt.
  26. Petrícek, V., Dušek, M., and Palatinus, L., Crystallographic computing system JANA2006: General features, Zeitschrift fur Krist., 2014, vol. 229, p. 345.
  27. ICDD PDF-2, International Center for Diffraction Data, Newton Square, USA, 1998.
  28. ICDD PDF-4+, International Center for Diffraction Data, Newton Square, USA, 2020.
  29. Jian, Z., Zhao, L., Hu, Y.-S., Li, H., Chen, W., and Chen, L., Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries, Electrochem. Commun., 2012, vol. 14, p. 86.
  30. Liu, R., Zheng, S., Yuan, Y., Yu, P., Liang, Z., and Zhao, W., Counter-Intuitive Structural Instability Aroused by Transition Metal Migration in Polyanionic Sodium Ion Host, Adv. Energy Mater., 2021, vol. 11, p. 2003256.
  31. Kim, S., Zhang, Z., Wang, S., Yang, L., Cairns, E.J., Penner-Hahn, J.E., and Deb, A., Electrochemical and Structural Investigation of the Mechanism of Irreversibility in Li3V2(PO4)3 Cathodes, J. Phys. Chem. C, 2016, vol. 120, p. 7005.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (119KB)
3.

Download (407KB)
4.

Download (190KB)
5.

Download (138KB)

Copyright (c) 2023 Т.И. Перфильева, А.М. Алексеева, О.А. Дрожжин, Е.В. Антипов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies