О влиянии нерегулярности границы области на решение краевой задачи для уравнения Лапласа

Обложка

Цитировать

Полный текст

Аннотация

Рассмотрена неоднородная краевая задача со смешанными краевыми условиями для уравнения Лапласа в области, представляющей такое возмущение $\Pi_\gamma$ прямоугольника $\Pi,$ при котором одна из его сторон заменена некоторой кривой $\gamma$ минимальной гладкости. Получена оценка разности решений возмущённой и невозмущённой задач в норме пространства Соболева $H^1$ на общей области их определения.

Об авторах

Л. Е Россовский

Российский университет дружбы народов

Email: lrossovskii@gmail.com
Москва, Россия

Р. В Шамин

МИРЭА -- Российский технологический университет

Автор, ответственный за переписку.
Email: roman@shamin.ru
Москва, Россия

Список литературы

  1. Лаврентьев М.А. Конформные отображения с приложениями к некоторыми вопросам механики. М., 1946.
  2. Шамин Р.В. Динамика идеальной жидкости со свободной поверхностью в конформных переменных // Соврем. математика. Фунд. направления. 2008. Т. 28. С. 3-144.
  3. Курант Р., Гильберт Д. Методы математической физики. Т. 1. М.; Л., 1953.
  4. Babu\\vska I., V\\'yborn\\'y R. Continuous dependence of the eigenvalues on the domain // Czechoslovak Math. J. 1965. V. 15. P. 169-178.
  5. Arrieta J.M., Hale J.K., Qing Han. Eigenvalue problems for nonsmoothly perturbed domains // J. Differ. Equat. 1991. V. 91. P. 24-52.
  6. Burenkov V.I., Davies E.B. Spectral stability of the Neumann laplacian // J. Differ. Equat. 2002. V. 186. P. 485-508.
  7. Россовский Л.Е. О спектральной устойчивости функционально-дифференциальных уравнений // Мат. заметки. 2011. Т. 90. № 6. С. 885-901.
  8. Стейн И.М. Сингулярные интегралы и дифференциальные свойства функций. М., 1973.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).