ON AN ALGORITHM OF DISTURBANCE RECONSTRUCTION FOR A NONLINEAR DIFFERENTIAL-ALGEBRAIC SYSTEM
- Authors: Maksimov V.I1, Larin E.T1
-
Affiliations:
- N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of RAS
- Issue: Vol 61, No 11 (2025)
- Pages: 1510-1526
- Section: CONTROL THEORY
- URL: https://journals.rcsi.science/0374-0641/article/view/352959
- DOI: https://doi.org/10.7868/S3034503025110063
- ID: 352959
Cite item
Abstract
The problem of reconstructing an unknown disturbance in a nonlinear system consisting of a combination of differential and algebraic equations is considered. Two cases are discussed. In the first case, a disturbance enters the system linearly; while in the second one, nonlinearly. In the case of linearity, the problem has two specific features. First, it is assumed that only a part of phase coordinates of the system (namely, the coordinates described by the differential equation) is inaccurately measured at discrete times. Second, it is only known about the disturbance acting on the system that it is an element of the space of square integrable functions; i.e., it can be unbounded. These assumptions imply the impossibility of exact reconstruction. Taking into account this peculiarity, we construct a solving algorithm, which is stable with respect to informational noises and computational errors. This algorithm is based on a combination of elements of the theory of ill-posed problems and the extremal shift method well-known in the theory of positional differential games. A similar algorithm is designed for a general case when a disturbance enters the system nonlinearly.
Keywords
About the authors
V. I Maksimov
N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of RAS
Email: maksimov@imm.uran.ru
Yekaterinburg
E. T Larin
N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of RAS
Email: larin.gor@bk.ru
Yekaterinburg
References
- Красовский, Н.Н. Позиционные дифференциальные игры / Н.Н. Красовский, А.И. Субботин. — М. : Наука, 1974. — 456 с.
- Тихонов, А.Н. Методы решения некорректных задач / А.Н. Тихонов, В.Я. Арсенин. — М. : Наука, 1978. — 285 с.
- Васильев, Ф.П. Методы оптимизации / Ф.П. Васильев. — М. : МЦНМО, 2011. — 624 с.
- Osipov, Yu.S. Inverse Problems for Ordinary Differential Equations: Dynamical Solutions / Yu.S. Osipov, A.V. Kryazhimskii. — London : Gordon and Breach Science Publishers, 1995. — 625 p.
- Осипов, Ю.С. Основы метода динамической регуляризации / Ю.С. Осипов, Ф.П. Васильев, М.М. Потапов. — М. : Изд-во Моск. ун-та, 1999. — 237 с.
- Осипов, Ю.С. Методы динамического восстановления входов управляемых систем / Ю.С. Осипов, А.В. Кряжимский, В.И. Максимов. — Екатеринбург : УрО РАН, 2011. — 291 с.
- Осипов, Ю.С. Некоторые алгоритмы динамического восстановления входов / Ю.С. Осипов, А.В. Кряжимский, В.И. Максимов // Тр. Ин-та математики и механики УрО РАН. — 2011. — Т. 17, № 1. — С. 129–161.
- Maksimov, V.I. The methods of dynamical reconstruction of an input in a system of ordinary differential equations / V.I. Maksimov // J. Inv. Ill-Posed Probl. — 2021. — V. 29, № 1. — P. 125–156.
- Blizorukova, M. On one algorithm for reconstruction of an disturbance in a linear system of ordinary differential equations / M. Blizorukova, V. Maksimov // Arch. Control Sci. — 2020. — V. 30, № 4. — P. 757–773.
- Larin, E. Stable solutions of the dynamical reconstruction problems / E. Larin, V. Maksimov // J. Math. Sci. — 2023. — V. 270, № 4. — P. 579–590.
- Maksimov, V.I. On dynamical input reconstruction in a distributed second order equation / V.I. Maksimov, Yu.S. Osipov // J. Inv. Ill-Posed Probl. — 2021. — V. 29, № 5. — P. 707–719.
- Сурков, П.Г. Адаптивный алгоритм идентификации помехи в системе дробного порядка на бесконечном промежутке времени / П.Г. Сурков // Тр. Ин-та математики и механики УрО РАН. — 2023. — Т. 29, № 2. — С. 172–188.
- Розенберг, В.Л. К задаче реконструкции при дефиците информации в квазилинейном стохастическом дифференциальном уравнении / В.Л. Розенберг // Журн. вычислит. математики и мат. физики. — 2022. — Т. 62, № 11. — С. 1840–1850.
- Maksimov, V. On stable solutions of the dynamical reconstruction and tracking control problems for coupled ordinary differential equation-heat / V.I. Maksimov // Math. Control and Related Fields. — 2024. — V. 370, № 1. — P. 599–601.
- Fang, H. On stable simultaneous input and state estimation for discrete-time linear systems / H. Fang, Y. Shi, J. Yu // Int. J. Adaptiv. Contr. Signal Proc. — 2011. — V. 25, № 8. — P. 671–686.
- Keller, J.Y. Kalman filter for discrete-time stochastic linear systems subject to intermittent unknown inputs / J.Y. Keller, D. Sauter // IEEE Trans. Automat. Control. — 2013. — V. 58, № 7. — P. 1882–1887.
- Chabir, K. Fault diagnosis in a networked control system under communication constraints: a quadrotor applications / K. Chabir, M.A. Sid, D. Sauter // Int. J. Apll. Math. Comput. Sci. — 2014. — Vol. 24, № 4. — P. 809–820.
- Quincampoix, M. Singular perturbation in nonlinear optimal control systems / M. Quincampoix, H. Zhang // Differ. Integral Equat. — 1995. — V. 8, № 4. — P. 931–944.
- Кряжимский, А.В. О непрерывности лебеговских множеств в задаче оптимального управления / А.В. Кряжимский // Задачи оптимизации и устойчивости в управляемых системах. — Свердловск : УрО АН СССР, 1990. — С. 54–73.
Supplementary files


