SUB-LORETZIAN EXTREMALS DEFINED BY AN ANTINORM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider a left-invariant sub-Lorentzian structure on a Lie group. We assume that this structure is defined by a closed convex salient cone in the corresponding Lie algebra and a continuous antinorm associated with this cone. We derive the Hamiltonian system for sub-Lorentzian extremals and give conditions under that normal extremal trajectories keep their causal type. Tangent vectors of abnormal extremal trajectories are either light-like or tangent vectors of sub-Riemannian extremal trajectories for the sub-Riemannian distribution spanned by the cone.

About the authors

A. V Podobryaev

A.K. Ailamazyan Program Systems Institute of RAS

Email: alex@alex.botik.ru
Pereslavl-Zalesskiy, Russia

References

  1. Grochowski, M. On the Heisenberg sub-Lorentzian metric on R / M. Grochowski // Geometric Singularity Theory. Banach Center Publications. — Warszawa : Institute of Mathematics. Polish Academy of Sciences, 2004. — V. 65. — P. 57–65.
  2. Grochowski, M. Reachable sets for the Heisenberg sub-Lorentzian structure on R. An estimate for the distance function / M. Grochowski // J. Dyn. Control Syst. — 2006. — V. 12, № 2. — P. 145–160.
  3. Сачков, Ю.Л. Сублоренцева задача на группе Гейзенберга / Ю.Л. Сачков, Е.Ф. Сачкова // Мат. заметки. — 2023. — Т. 113, № 1. — С. 154–157.
  4. Sachkov, Yu.L. Sub-Lorentzian distance and spheres on the Heisenberg group / Yu.L. Sachkov, E.F. Sachkova // J. Dyn. Control Syst. — 2023. — V. 29. — P. 1129–1159.
  5. Grong, E. Sub-Riemannian and sub-Lorentzian geometry on ????????(1, 1) and on its universal cover / E. Grong, A. Vasil’ev // J. Geom. Mech. — 2011. — V. 3, № 2. — P. 225–260.
  6. Сачков, Ю.Л. Лоренцева геометрия на плоскости Лобачевского / Ю.Л. Сачков // Мат. заметки. — 2023. — T. 114, № 1. — С. 154–157.
  7. Sachkov, Yu.L. Lorentzian distance on the Lobachevsky plane / Yu.L. Sachkov // arXiv:2307.07706. — 2023.
  8. Agrachev, A. A Comprehensive Introduction to Sub-Riemannian Geometry / A. Agrachev, D. Barilari, U. Boscain. — Cambridge; New York : Cambridge University Press, 2019. — 745 p.
  9. Сачков, Ю.Л. Введение в геометрическую теорию управления / Ю.Л. Сачков. — М. : Ленанд, 2021. — 160 с.
  10. Локуциевский, Л.В. Выпуклая тригонометрия с приложениями к субфинслеровой геометрии / Л.В. Локуциевский // Мат. сборник. — 2019. – Т. 210, № 8. — С. 120–148.
  11. Ардентов, А.А. Решение серии задач оптимального управления с 2-мерным управлением на основе выпуклой тригонометрии / А.А. Ардентов, Л.В. Локуциевский, Ю.Л. Сачков // Докл. РАН. Математика, информатика, процессы управления. — 2020. — Т. 494. — С. 86–92.
  12. Ardentov, A.A. Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry / A.A. Ardentov, L.V. Lokutsievskiy, Yu.L. Sachkov // ESAIM: Control, Optimization and Calculus of Variations. — 2021. — V. 27, № 32. — P. 32–52.
  13. Lokutsievskiy, L.V. Explicit formulae for geodesics in left-invariant sub-Finsler problems on Heisenberg groups via convex trigonometry / L.V. Lokutsievskiy // J. Dyn. Control Syst. — 2021. — V. 27. — P. 661–681.
  14. Protasov, V.Yu. Antinorms on cones: duality and applications / V.Yu. Protasov // Linear and Multilinear Algebra. — 2021. — V. 70, № 22. — P. 7387–7413.
  15. Математическая теория оптимальных процессов / Л.С. Понтрягин, В.Г. Болтянский, Р.В. Гамкрелидзе, Е.Ф. Мищенко. — 4-е изд., стереотип. — М. : Наука, 1983. — 393 с.
  16. Аграчев, А.А. Геометрическая теория управления / А.А. Аграчев, Ю.Л. Сачков. — М. : Физматлит, 2004. — 392 с.
  17. Рокафеллар, Р. Выпуклый анализ / Р. Рокафеллар ; пер. с англ. А.Д. Иоффе и В.М. Тихомирова. — М. : Мир, 1973. — 469 с.
  18. Сачков, Ю.Л. Структура анормальных экстремалей в субримановой задаче с вектором роста (2, 3, 5, 8) / Ю.Л. Сачков, Е.Ф. Сачкова // Мат. сб. — 2020. — Т. 211, № 10. — С. 112–138.
  19. Grochowski, M., On the Heisenberg sub-Lorentzian metric on R, in Geometric singularity theory. Banach Center publications, Warszawa: Institute of Mathematics. Polish Academy of Sciences, 2004, vol. 65, pp. 57–65.
  20. Grochowski, M., Reachable sets for the Heisenberg sub-Lorentzian structure on R. An estimate for the distance function, J. Dyn. Control Syst., 2006, vol. 12, no. 2, pp. 145–160.
  21. Sachkov, Yu.L. and Sachkova, E.F., Sub-Lorentzian problem on the Heisenberg group, Math. Notes, 2023, vol. 113, pp. 159–162.
  22. Sachkov, Yu.L. and Sachkova, E.F., Sub-Lorentzian distance and spheres on the Heisenberg group, J. Dyn. Control Syst., 2023, vol. 29, pp. 1129–1159.
  23. Grong, E. and Vasil’ev, A., Sub-Riemannian and sub-Lorentzian geometry on ???????? (1, 1) and on its universal cover, J. Geom. Mech., 2011, vol. 3, no. 2, pp. 225–260.
  24. Sachkov, Yu.L., Lorentzian geometry on the Lobachevsky plane, Math. Notes, 2023, vol. 114, pp. 127–130.
  25. Sachkov, Yu.L., Lorentzian distance on the Lobachevsky plane, 2023, arXiv:2307.07706.
  26. Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge–New York: Cambridge University Press, 2019.
  27. Sachkov, Yu.L., Introduction to Geometric Control, Cham: Springer, 2021.
  28. Lokutsievskiy, L.V., Convex trigonometry with applications to sub-Finsler geometry, Sb. Math., 2019, vol. 210, no. 8, pp. 1179–1205.
  29. Ardentov, A.A., Lokutsievskiy, L.V., and Sachkov, Y.L., Explicit solutions for a series of optimization problems with 2-dimensional control via convex trigonometry, Dokl. Math., 2020, vol. 210, pp. 427–432.
  30. Ardentov, A.A., Lokutsievskiy, L.V., and Sachkov, Yu.L., Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry, ESAIM: Control, Optimization and Calculus of Variations, 2021, vol. 27, no. 32, pp. 32–52.
  31. Lokutsievskiy, L.V., Explicit formulae for geodesics in left-invariant sub-Finsler problems on Heisenberg groups via convex trigonometry, J. Dyn. Control Syst., 2021, vol. 27, pp. 661–681.
  32. Protasov, V.Yu., Antinorms on cones: duality and applications, Linear and Multilinear Algebra, 2021, vol. 70, no. 22, pp. 7387–7413.
  33. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko E.F., The Mathematical Theory of Optimal Processes, Oxford: Pergamon Press, 1964.
  34. Agrachev, A.A. and Sachkov, Yu.L., Control Theory from the Geometric Viewpoint, Berlin–Heidelberg–New York: Springer-Verlag, 2004.
  35. Rockafellar, R., Convex Analysis, Princeton: Princeton University Press, 1970.
  36. Sachkov, Yu.L. and Sachkova, E.F., The structure of abnormal extremals in a sub-Riemannian problem with growth vector (2, 3, 5, 8), Sb. Math., 2020, vol. 211, no. 10, pp. 1460–1485.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies