Existence of Two Solutions of the Inverse Problem for a Mathematical Model of Sorption Dynamics

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The inverse problem for a nonlinear mathematical model of sorption dynamics with an unknown variable kinetic coefficient is considered. A theorem on the existence of two solutions of the inverse problem is proved, and an iterative method for solving it is justified. An example of the application of the proposed method to the numerical solution of the inverse problem is given.

作者简介

A. Denisov

Lomonosov Moscow State University, Moscow, 119991, Russia

Email: den@cs.msu.ru

Chzhu Duntsin'

Lomonosov Moscow State University, Moscow, 119991, Russia

编辑信件的主要联系方式.
Email: zhudq1002@163.com

参考

  1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М., 1999.
  2. Денисов А.М., Чжу Дунцинь. Обратная задача для математической модели динамики сорбции с переменным кинетическим коэффициентом // Вестн. Московского ун-та. Сер. 15. Вычислит. математика и кибернетика. 2022. № 4. С. 5-13.
  3. Денисов А.М., Туйкина С.Р. О некоторых обратных задачах неравновесной динамики сорбции // Докл. АН СССР. 1984. Т. 276. № 1. С. 100-102.
  4. Lorenzi A., Paparoni E. An inverse problem arising in the theory of absorption // Appl. Anal. 1990. V. 36. № 3. P. 249-263.
  5. Muraviev D.N., Chanov A.V., Denisov A.M., Omarova F., Tuikina S.R. A numerical method for calculating isotherms of ion exchange on impregnated sulfonate ion-exchangers based on data of dynamic experiments // Reactive Polymers. 1992. V. 17. № 1. P. 29-38.
  6. Denisov A.M., Lamos H. An inverse problem for a nonlinear mathematical model of sorption dynamics with mixed-diffusional kinetics // J. Inverse and Ill Posed Problems. 1996. V. 4. № 3. P. 191-202.
  7. Щеглов А.Ю. Метод решения обратной граничной задачи динамики сорбции с учётом диффузии внутри зерна // Журн. вычислит. математики и мат. физики. 2002. Т. 42. № 4. С. 580-590.
  8. Denisov A.M., Lorenzi A. Recovering an unknown coefficient in an absorption model with diffusion // J. Inverse and Ill Posed Problems. 2007. V. 15. № 6. P. 599-610.
  9. Tuikina S.R., Solov'eva S.I. Numerical solution of an inverse problem for a two-dimensional model of sorption dynamics // Comput. Math. and Model. 2012. V. 23. № 1. P. 34-41.
  10. Tuikina S.R. A numerical method for the solution of two inverse problems in the mathematical model of redox sorption // Comput. Math. and Model. 2020. V. 31. № 1. P. 96-103.
  11. Денисов А.М., Ефимов А.А. Итерационный метод численного решения обратной коэффициентной задачи для системы уравнений в частных производных // Дифференц. уравнения. 2020. Т. 56. № 7. С. 900-909.
  12. Денисов А.М. Существование и единственность решения одной системы нелинейных интегральных уравнений // Дифференц. уравнения. 2020. Т. 56. № 9. С. 1174-1181.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».