Perekhod metall-dielektrik i drugie elektronnye svoystva dvukhsloynogo AV-grafena na ferromagnitnoy podlozhke

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using a simple theoretical model, AB-stacked bilayer graphene deposited on a ferromagnetic insulating substrate is studied. In addition to the exchange Zeeman field induced by the substrate, the model allows one to take into account the effective external electric field perpendicular to the graphene sample plane (such field arises due to the contact with the substrate and can also be induced by applying a gate voltage). It has been demonstrated that AB-stacked graphene in zero electric field is in a metallic state. As the field increases, a transition to the insulating phase occurs. The spectrum of electron states, the band gap, and other characteristics of the phases on both sides of the metal−insulator transition have been calculated. Our results are consistent with density functional theory calculations and can be useful for spintronics.

Авторлар туралы

I. Gobelko

Moscow Institute of Physics and Technology (National Research University)

Email: arozhkov@gmail.com
141700, Dolgoprudnyi, Moscow region, Russia

A. Rozhkov

Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences

Email: arozhkov@gmail.com
125412, Moscow, Russia

D. Dresvyankin

Skolkovo Institute of Science and Technology

Хат алмасуға жауапты Автор.
Email: arozhkov@gmail.com
121205, Moscow, Russia

Әдебиет тізімі

  1. W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nature Nanotechnology, 9, 794 (2014).
  2. S. Roche, J. ˚Akerman, B. Beschoten et al. (Collaboration), 2D Mater. 2, 030202 (2015).
  3. S. S. Gregersen, S. R. Power, and A.-P. Jauho, Phys. Rev. B 95, 121406(R) (2017).
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsova, Science 306, 5696 (2004).
  5. I. S. Sokolov, D. V. Averyanov, O. E. Parfenov, I. A. Karateev, A. N. Taldenkov, A. M. Tokmachev, and V. G. Storchak, Mater. Horiz. 7, 1372 (2020).
  6. A. V. Rozhkov, A. O. Sboychakov, A. L. Rakhmanov, and F. Nori, Phys. Rep. 648, 1 (2016).
  7. P. Wei, S. Lee, F. Lemaitre, L. Pinel, D. Cutaia, W. Cha, F. Katmis, Y. Zhu, D. Heiman, J. Hone, J. S. Moodera, and C.-T. Chen, Nat. Mater. 15, 711 (2016).
  8. K. Zollner, M. Gmitra, T. Frank, and J. Fabian, Phys. Rev. B 94, 155441 (2016).
  9. K. Zollner, M. Gmitra, and J. Fabian, New J. Phys. 20, 073007 (2016).
  10. P. Michetti, P. Recher, and G. Iannaccone, Nano Lett. 10, 4463 (2010).
  11. A. B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake, and K. S. Novoselov, Phys. Rev. B 80, 165406 (2009).
  12. H. Min, B. Sahu, S. K. Banerjee, and A. H. MacDonald, Phys. Rev. B 75, 155115 (2007).
  13. E. McCann, Phys. Rev. B 74, 161403(R) (2006).
  14. E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006).
  15. E. A. Henriksen and J. P. Eisenstein, Phys. Rev. B 82, 041412(R) (2010).
  16. A. B. Kuzmenko, E. van Heumen, D. van der Marel, P. Lerch, P. Blake, K. S. Novoselov, and A. K. Geim, Phys. Rev. B 79, 115441 (2009).
  17. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).
  18. Д. Н. Дресвянкин, А. В. Рожков, А. О. Сбойчаков, Письма в ЖЭТФ 114(12), 824 (2021).

© Российская академия наук, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>