Perekhod metall-dielektrik i drugie elektronnye svoystva dvukhsloynogo AV-grafena na ferromagnitnoy podlozhke

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using a simple theoretical model, AB-stacked bilayer graphene deposited on a ferromagnetic insulating substrate is studied. In addition to the exchange Zeeman field induced by the substrate, the model allows one to take into account the effective external electric field perpendicular to the graphene sample plane (such field arises due to the contact with the substrate and can also be induced by applying a gate voltage). It has been demonstrated that AB-stacked graphene in zero electric field is in a metallic state. As the field increases, a transition to the insulating phase occurs. The spectrum of electron states, the band gap, and other characteristics of the phases on both sides of the metal−insulator transition have been calculated. Our results are consistent with density functional theory calculations and can be useful for spintronics.

About the authors

I. E. Gobelko

Moscow Institute of Physics and Technology (National Research University)

Email: arozhkov@gmail.com
141700, Dolgoprudnyi, Moscow region, Russia

A. V. Rozhkov

Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences

Email: arozhkov@gmail.com
125412, Moscow, Russia

D. N. Dresvyankin

Skolkovo Institute of Science and Technology

Author for correspondence.
Email: arozhkov@gmail.com
121205, Moscow, Russia

References

  1. W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nature Nanotechnology, 9, 794 (2014).
  2. S. Roche, J. ˚Akerman, B. Beschoten et al. (Collaboration), 2D Mater. 2, 030202 (2015).
  3. S. S. Gregersen, S. R. Power, and A.-P. Jauho, Phys. Rev. B 95, 121406(R) (2017).
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsova, Science 306, 5696 (2004).
  5. I. S. Sokolov, D. V. Averyanov, O. E. Parfenov, I. A. Karateev, A. N. Taldenkov, A. M. Tokmachev, and V. G. Storchak, Mater. Horiz. 7, 1372 (2020).
  6. A. V. Rozhkov, A. O. Sboychakov, A. L. Rakhmanov, and F. Nori, Phys. Rep. 648, 1 (2016).
  7. P. Wei, S. Lee, F. Lemaitre, L. Pinel, D. Cutaia, W. Cha, F. Katmis, Y. Zhu, D. Heiman, J. Hone, J. S. Moodera, and C.-T. Chen, Nat. Mater. 15, 711 (2016).
  8. K. Zollner, M. Gmitra, T. Frank, and J. Fabian, Phys. Rev. B 94, 155441 (2016).
  9. K. Zollner, M. Gmitra, and J. Fabian, New J. Phys. 20, 073007 (2016).
  10. P. Michetti, P. Recher, and G. Iannaccone, Nano Lett. 10, 4463 (2010).
  11. A. B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake, and K. S. Novoselov, Phys. Rev. B 80, 165406 (2009).
  12. H. Min, B. Sahu, S. K. Banerjee, and A. H. MacDonald, Phys. Rev. B 75, 155115 (2007).
  13. E. McCann, Phys. Rev. B 74, 161403(R) (2006).
  14. E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006).
  15. E. A. Henriksen and J. P. Eisenstein, Phys. Rev. B 82, 041412(R) (2010).
  16. A. B. Kuzmenko, E. van Heumen, D. van der Marel, P. Lerch, P. Blake, K. S. Novoselov, and A. K. Geim, Phys. Rev. B 79, 115441 (2009).
  17. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).
  18. Д. Н. Дресвянкин, А. В. Рожков, А. О. Сбойчаков, Письма в ЖЭТФ 114(12), 824 (2021).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies