Temperaturnaya zavisimost' zapreshchennoy zony polnost'yu ftorirovannykh/gidrirovannykh uglerodnykh nanotrubok: rol' odnomernykh tsepochek

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The temperature dependence of the band gap Eg(T) in zigzag single-walled carbon nanotubes at the maximum (50%) fluorination and hydrogenation has been theoretically investigated for three coating versions. It has been shown that the character of coating dramatically affects the dependence Eg(T), which may vary over a wide range from very weak (typical of pure carbon nanotubes) to strong (typical of bulk semiconductors). The character of the temperature behavior Eg(T) is directly related to the formation of one-dimensional alternating chains in nanotubes. The main factors determining this dependence are the diameter of carbon nanotube, impurity position, and impurity type.

About the authors

V. L. Katkov

Joint Institute for Nuclear Research

Email: katkov@theor.jinr.ru
141980, Dubna, Moscow region, Russia

V. A. Osipov

Joint Institute for Nuclear Research

Author for correspondence.
Email: osipov@theor.jinr.ru
141980, Dubna, Moscow region, Russia

References

  1. L. Qian, Y. Xie, S. Zhang, and J. Zhang, Matter 3, 664 (2020).
  2. R. D. Yamaletdinov, V. L. Katkov, Y. A. Nikiforov, A. V. Okotrub, and V. A. Osipov, Advanced Theory and Simulations 3(4), 1900199 (2020).
  3. L. A. Chernozatonskii, P. B. Sorokin, and A. A. Artukh, Russ. Chem. Rev. 83, 251 (2014).
  4. J. E. Johns and M. C. Hersam, Acc. Chem. Res. 46(1), 77 (2013); PMID: 23030800.
  5. R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 94, 036801 (2005).
  6. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge, and J. L. Margrave, J. Phys. Chem. B 103(21), 4318 (1999).
  7. G. Seifert, T. K¨ohler, and T. Frauenheim, Appl. Phys. Lett. 77, 1313 (2000).
  8. K. N. Kudin, H. F. Bettinger, and G. E. Scuseria, Phys. Rev. B 63, 045413 (2001).
  9. C. W. Bauschlicher, Nano Lett. 1(5), 223 (2001).
  10. M. de Avila Ribas, A. K. Singh, P. B. Sorokin, and B. I. Yakobson, Nano Res. 4, 143 (2010).
  11. S. Ponc'e, G. Antonius, Y. Gillet, P. Boulanger, J. La amme Janssen, A. Marini, M. Cˆot'e, and X. Gonze, Phys. Rev. B 90, 214304 (2014).
  12. J.-M. Lihm and C.-H. Park, Phys. Rev. B 101, 121102 (2020).
  13. M. Zacharias and F. Giustino, Phys. Rev. B 94, 075125 (2016).
  14. M. Zacharias and F. Giustino, Phys. Rev. Res. 2, 013357 (2020).
  15. M. Zacharias and P. C. Kelires, J. Phys. Chem. Lett. 12, 9940 (2021).
  16. F. Karsai, M. Engel, E. Flage-Larsen, and G. Kresse, New J. Phys. 20, 123008 (2018).
  17. Y. Zhang, Z. Wang, J. Xi, and J. Yang, J. Phys. Condens. Matter 32, 475503 (2020).
  18. H. Shang and J. Yang, J. Chem. Phys. 158, 130901 (2023).
  19. B. Monserrat, Phys. Rev. B 93, 014302 (2016).
  20. B. Hourahine, B. Aradi, V. Blum et al. (Collaboration), J. Chem. Phys. 152, 124101 (2020).
  21. S. Grimme, C. Bannwarth, and P. Shushkov, J. Chem. Theory Comput. 13, 1989 (2017).
  22. O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 (2003).
  23. A. Croy, E. Unsal, R. Biele, and A. Pecchia, J.Comput. Electron. 22, 1231 (2023).

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies