Temperaturnaya zavisimost' zapreshchennoy zony polnost'yu ftorirovannykh/gidrirovannykh uglerodnykh nanotrubok: rol' odnomernykh tsepochek

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The temperature dependence of the band gap Eg(T) in zigzag single-walled carbon nanotubes at the maximum (50%) fluorination and hydrogenation has been theoretically investigated for three coating versions. It has been shown that the character of coating dramatically affects the dependence Eg(T), which may vary over a wide range from very weak (typical of pure carbon nanotubes) to strong (typical of bulk semiconductors). The character of the temperature behavior Eg(T) is directly related to the formation of one-dimensional alternating chains in nanotubes. The main factors determining this dependence are the diameter of carbon nanotube, impurity position, and impurity type.

作者简介

V. Katkov

Joint Institute for Nuclear Research

Email: katkov@theor.jinr.ru
141980, Dubna, Moscow region, Russia

V. Osipov

Joint Institute for Nuclear Research

编辑信件的主要联系方式.
Email: osipov@theor.jinr.ru
141980, Dubna, Moscow region, Russia

参考

  1. L. Qian, Y. Xie, S. Zhang, and J. Zhang, Matter 3, 664 (2020).
  2. R. D. Yamaletdinov, V. L. Katkov, Y. A. Nikiforov, A. V. Okotrub, and V. A. Osipov, Advanced Theory and Simulations 3(4), 1900199 (2020).
  3. L. A. Chernozatonskii, P. B. Sorokin, and A. A. Artukh, Russ. Chem. Rev. 83, 251 (2014).
  4. J. E. Johns and M. C. Hersam, Acc. Chem. Res. 46(1), 77 (2013); PMID: 23030800.
  5. R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 94, 036801 (2005).
  6. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge, and J. L. Margrave, J. Phys. Chem. B 103(21), 4318 (1999).
  7. G. Seifert, T. K¨ohler, and T. Frauenheim, Appl. Phys. Lett. 77, 1313 (2000).
  8. K. N. Kudin, H. F. Bettinger, and G. E. Scuseria, Phys. Rev. B 63, 045413 (2001).
  9. C. W. Bauschlicher, Nano Lett. 1(5), 223 (2001).
  10. M. de Avila Ribas, A. K. Singh, P. B. Sorokin, and B. I. Yakobson, Nano Res. 4, 143 (2010).
  11. S. Ponc'e, G. Antonius, Y. Gillet, P. Boulanger, J. La amme Janssen, A. Marini, M. Cˆot'e, and X. Gonze, Phys. Rev. B 90, 214304 (2014).
  12. J.-M. Lihm and C.-H. Park, Phys. Rev. B 101, 121102 (2020).
  13. M. Zacharias and F. Giustino, Phys. Rev. B 94, 075125 (2016).
  14. M. Zacharias and F. Giustino, Phys. Rev. Res. 2, 013357 (2020).
  15. M. Zacharias and P. C. Kelires, J. Phys. Chem. Lett. 12, 9940 (2021).
  16. F. Karsai, M. Engel, E. Flage-Larsen, and G. Kresse, New J. Phys. 20, 123008 (2018).
  17. Y. Zhang, Z. Wang, J. Xi, and J. Yang, J. Phys. Condens. Matter 32, 475503 (2020).
  18. H. Shang and J. Yang, J. Chem. Phys. 158, 130901 (2023).
  19. B. Monserrat, Phys. Rev. B 93, 014302 (2016).
  20. B. Hourahine, B. Aradi, V. Blum et al. (Collaboration), J. Chem. Phys. 152, 124101 (2020).
  21. S. Grimme, C. Bannwarth, and P. Shushkov, J. Chem. Theory Comput. 13, 1989 (2017).
  22. O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 (2003).
  23. A. Croy, E. Unsal, R. Biele, and A. Pecchia, J.Comput. Electron. 22, 1231 (2023).

版权所有 © Российская академия наук, 2023

##common.cookie##