Contact line bundles, foliations and integrability
- Autores: Jovanović B.1
-
Afiliações:
- Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Republic of Serbia
- Edição: Volume 216, Nº 5 (2025)
- Páginas: 123-150
- Seção: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/306708
- DOI: https://doi.org/10.4213/sm10156
- ID: 306708
Citar
Resumo
We formulate the definition of the noncommutative integrability of contact systems on a contact manifold $(M,\mathcal H)$ using the Jacobi structure on the space of sections $\Gamma(L)$ of a contact line bundle $L$. In the cooriented case, if the line bundle is trivial and $\mathcal H$ is the kernel of a globally defined contact form $\alpha$, the Jacobi structure on the space of sections reduces to the standard Jacobi structure on $(M, \alpha)$. We therefore treat contact systems on cooriented and non-cooriented contact manifolds simultaneously. In particular, this allows us to work with dissipative Hamiltonian systems, where the Hamiltonian does not have to be preserved by the Reeb vector field.
Sobre autores
Božidar Jovanović
Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Republic of Serbia
Autor responsável pela correspondência
Email: bozaj@mi.sanu.ac.rs
PhD, Professor
Bibliografia
- В. И. Арнольд, Математические методы классической механики, 3-е изд., Наука, М., 1989, 472 с.
- A. Banyaga, P. Molino, “Geometrie des formes de contact completement integrables de type toriques”, Seminaire Gaston Darboux de geometrie et topologie differentielle. 1991–1992 (Montpellier), Univ. Montpellier II, Dep. Sci. Math., Montpellier, 1993, 1–25
- A. M. Blaga, M. A. Salazar, A. G. Tortorella, C. Vizman, “Contact dual pairs”, Int. Math. Res. Not. IMRN, 2020:22 (2020), 8818–8877
- O. I. Bogoyavlenskij, “Extended integrability and bi-hamiltonian systems”, Comm. Math. Phys., 196:1 (1998), 19–51
- A. V. Bolsinov, B. Jovanovic, “Noncommutative integrability, moment map and geodesic flows”, Ann. Global Anal. Geom., 23:4 (2003), 305–322
- C. P. Boyer, “Completely integrable contact Hamiltonian systems and toric contact structures on $S^2times S^3$”, SIGMA, 7 (2011), 058, 22 pp.
- J. F. Cariñena, F. Falceto, J. Grabowski, “Solvability of a Lie algebra of vector fields implies their integrability by quadratures”, J. Phys. A, 49:42 (2016), 425202, 13 pp.
- L. Colombo, M. de Leon, M. Lainz, A. Lopez-Gordon, Liouville–Arnold theorem for contact Hamiltonian systems
- F. Fassò, N. Sansonetto, “Integrable almost-symplectic Hamiltonian systems”, J. Math. Phys., 48:9 (2007), 092902, 13 pp.
- J. W. Gray, “Some global properties of contact structures”, Ann. of Math. (2), 69:2 (1959), 421–450
- Ф. Гриффитс, Дж. Харрис, Принципы алгебраической геометрии, Мир, М., 1982, 864 с.
- M. de Leon, M. Lainz Valcazar, “Infinitesimal symmetries in contact Hamiltonian systems”, J. Geom. Phys., 153 (2020), 103651, 13 pp.
- B. Jovanovic, “Noncommutative integrability and action-angle variables in contact geometry”, J. Symplectic Geom., 10:4 (2012), 535–561
- B. Jovanovic, “Symmetries and integrability”, Publ. Inst. Math. (Beograd) (N.S.), 84:98 (2008), 1–36
- B. Jovanovic, V. Jovanovic, “Contact flows and integrable systems”, J. Geom. Phys., 87 (2015), 217–232
- B. Jovanovic, V. Jovanovic, “Heisenberg model in pseudo-Euclidean spaces II”, Regul. Chaotic Dyn., 23:4 (2018), 418–437
- B. Jovanovic, V. Jovanovic, “Virtual billiards in pseudo-Euclidean spaces: discrete Hamiltonian and contact integrability”, Discrete Contin. Dyn. Syst., 37:10 (2017), 5163–5190
- B. Jovanovic, K. Lukic, “Integrable systems in cosymplectic geometry”, J. Phys. A, 56:1 (2023), 015201, 18 pp.
- B. Khesin, S. Tabachnikov, “Contact complete integrability”, Regul. Chaotic Dyn., 15:4-5 (2010), 504–520
- A. Kiesenhofer, E. Miranda, “Noncommutative integrable systems on $b$-symplectic manifolds”, Regul. Chaotic Dyn., 21:6 (2016), 643–659
- В. В. Козлов, Симметрии, топология и резонансы в гамильтоновой механике, Изд-во Удмуртского ун-та, Ижевск, 1995, 429 с.
- V. V. Kozlov, “The Euler–Jacobi–Lie integrability theorem”, Regul. Chaotic Dyn., 18:4 (2013), 329–343
- C. Laurent-Gengoux, E. Miranda, P. Vanhaecke, “Action-angle coordinates for integrable systems on Poisson manifolds”, Int. Math. Res. Not. IMRN, 2011:8 (2011), 1839–1869
- P. Libermann, “Cartan–Darboux theorems for Pfaffian forms on foliated manifolds”, Proceedings of the sixth international colloquium on differential geometry (Santiago de Compostela, 1988), Cursos Congr. Univ. Santiago de Compostela, 61, Univ. Santiago de Compostela, Santiago de Compostela, 1989, 125–144
- P. Libermann, C.-M. Marle, Symplectic geometry and analytical mechanics, Transl. from the French, Math. Appl., 35, D. Reidel Publishing Co., Dordrecht, 1987, xvi+526 pp.
- А. С. Мищенко, А. Т. Фоменко, “Обобщенный метод Лиувилля интегрирования гамильтоновых систем”, Функц. анализ и его прил., 12:2 (1978), 46–56
- Н. Н. Нехорошев, “Переменные действие-угол и их обобщения”, Тр. ММО, 26, Изд-во Моск. ун-та, М., 1972, 181–198
- M. A. Salazar, D. Sepe, “Contact isotropic realisations of Jacobi manifolds via Spencer operators”, SIGMA, 13 (2017), 033, 44 pp.
- В. В. Трофимов, А. Т. Фоменко, Алгебра и геометрия интегрируемых гамильтоновых дифференциальных уравнений, Математика и еe приложения, Факториал, М.; Изд-во Удмуртского гос. ун-та, Ижевск, 1995, 448 с.
- M. Zambon, Chenchang Zhu, “Contact reduction and groupoid actions”, Trans. Amer. Math. Soc., 358:3 (2006), 1365–1401
- Nguyen Tien Zung, “A conceptual approach to the problem of action-angle variables”, Arch. Ration. Mech. Anal., 229:2 (2018), 789–833
- Nguyen Tien Zung, “Torus actions and integrable systems”, Topological methods in the theory of integrable systems, Cambridge Sci. Publ., Cambridge, 2006, 289–328
Arquivos suplementares
