Contact line bundles, foliations and integrability

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We formulate the definition of the noncommutative integrability of contact systems on a contact manifold $(M,\mathcal H)$ using the Jacobi structure on the space of sections $\Gamma(L)$ of a contact line bundle $L$. In the cooriented case, if the line bundle is trivial and $\mathcal H$ is the kernel of a globally defined contact form $\alpha$, the Jacobi structure on the space of sections reduces to the standard Jacobi structure on $(M, \alpha)$. We therefore treat contact systems on cooriented and non-cooriented contact manifolds simultaneously. In particular, this allows us to work with dissipative Hamiltonian systems, where the Hamiltonian does not have to be preserved by the Reeb vector field.

About the authors

Božidar Jovanović

Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Republic of Serbia

Author for correspondence.
Email: bozaj@mi.sanu.ac.rs
PhD, Professor

References

  1. В. И. Арнольд, Математические методы классической механики, 3-е изд., Наука, М., 1989, 472 с.
  2. A. Banyaga, P. Molino, “Geometrie des formes de contact completement integrables de type toriques”, Seminaire Gaston Darboux de geometrie et topologie differentielle. 1991–1992 (Montpellier), Univ. Montpellier II, Dep. Sci. Math., Montpellier, 1993, 1–25
  3. A. M. Blaga, M. A. Salazar, A. G. Tortorella, C. Vizman, “Contact dual pairs”, Int. Math. Res. Not. IMRN, 2020:22 (2020), 8818–8877
  4. O. I. Bogoyavlenskij, “Extended integrability and bi-hamiltonian systems”, Comm. Math. Phys., 196:1 (1998), 19–51
  5. A. V. Bolsinov, B. Jovanovic, “Noncommutative integrability, moment map and geodesic flows”, Ann. Global Anal. Geom., 23:4 (2003), 305–322
  6. C. P. Boyer, “Completely integrable contact Hamiltonian systems and toric contact structures on $S^2times S^3$”, SIGMA, 7 (2011), 058, 22 pp.
  7. J. F. Cariñena, F. Falceto, J. Grabowski, “Solvability of a Lie algebra of vector fields implies their integrability by quadratures”, J. Phys. A, 49:42 (2016), 425202, 13 pp.
  8. L. Colombo, M. de Leon, M. Lainz, A. Lopez-Gordon, Liouville–Arnold theorem for contact Hamiltonian systems
  9. F. Fassò, N. Sansonetto, “Integrable almost-symplectic Hamiltonian systems”, J. Math. Phys., 48:9 (2007), 092902, 13 pp.
  10. J. W. Gray, “Some global properties of contact structures”, Ann. of Math. (2), 69:2 (1959), 421–450
  11. Ф. Гриффитс, Дж. Харрис, Принципы алгебраической геометрии, Мир, М., 1982, 864 с.
  12. M. de Leon, M. Lainz Valcazar, “Infinitesimal symmetries in contact Hamiltonian systems”, J. Geom. Phys., 153 (2020), 103651, 13 pp.
  13. B. Jovanovic, “Noncommutative integrability and action-angle variables in contact geometry”, J. Symplectic Geom., 10:4 (2012), 535–561
  14. B. Jovanovic, “Symmetries and integrability”, Publ. Inst. Math. (Beograd) (N.S.), 84:98 (2008), 1–36
  15. B. Jovanovic, V. Jovanovic, “Contact flows and integrable systems”, J. Geom. Phys., 87 (2015), 217–232
  16. B. Jovanovic, V. Jovanovic, “Heisenberg model in pseudo-Euclidean spaces II”, Regul. Chaotic Dyn., 23:4 (2018), 418–437
  17. B. Jovanovic, V. Jovanovic, “Virtual billiards in pseudo-Euclidean spaces: discrete Hamiltonian and contact integrability”, Discrete Contin. Dyn. Syst., 37:10 (2017), 5163–5190
  18. B. Jovanovic, K. Lukic, “Integrable systems in cosymplectic geometry”, J. Phys. A, 56:1 (2023), 015201, 18 pp.
  19. B. Khesin, S. Tabachnikov, “Contact complete integrability”, Regul. Chaotic Dyn., 15:4-5 (2010), 504–520
  20. A. Kiesenhofer, E. Miranda, “Noncommutative integrable systems on $b$-symplectic manifolds”, Regul. Chaotic Dyn., 21:6 (2016), 643–659
  21. В. В. Козлов, Симметрии, топология и резонансы в гамильтоновой механике, Изд-во Удмуртского ун-та, Ижевск, 1995, 429 с.
  22. V. V. Kozlov, “The Euler–Jacobi–Lie integrability theorem”, Regul. Chaotic Dyn., 18:4 (2013), 329–343
  23. C. Laurent-Gengoux, E. Miranda, P. Vanhaecke, “Action-angle coordinates for integrable systems on Poisson manifolds”, Int. Math. Res. Not. IMRN, 2011:8 (2011), 1839–1869
  24. P. Libermann, “Cartan–Darboux theorems for Pfaffian forms on foliated manifolds”, Proceedings of the sixth international colloquium on differential geometry (Santiago de Compostela, 1988), Cursos Congr. Univ. Santiago de Compostela, 61, Univ. Santiago de Compostela, Santiago de Compostela, 1989, 125–144
  25. P. Libermann, C.-M. Marle, Symplectic geometry and analytical mechanics, Transl. from the French, Math. Appl., 35, D. Reidel Publishing Co., Dordrecht, 1987, xvi+526 pp.
  26. А. С. Мищенко, А. Т. Фоменко, “Обобщенный метод Лиувилля интегрирования гамильтоновых систем”, Функц. анализ и его прил., 12:2 (1978), 46–56
  27. Н. Н. Нехорошев, “Переменные действие-угол и их обобщения”, Тр. ММО, 26, Изд-во Моск. ун-та, М., 1972, 181–198
  28. M. A. Salazar, D. Sepe, “Contact isotropic realisations of Jacobi manifolds via Spencer operators”, SIGMA, 13 (2017), 033, 44 pp.
  29. В. В. Трофимов, А. Т. Фоменко, Алгебра и геометрия интегрируемых гамильтоновых дифференциальных уравнений, Математика и еe приложения, Факториал, М.; Изд-во Удмуртского гос. ун-та, Ижевск, 1995, 448 с.
  30. M. Zambon, Chenchang Zhu, “Contact reduction and groupoid actions”, Trans. Amer. Math. Soc., 358:3 (2006), 1365–1401
  31. Nguyen Tien Zung, “A conceptual approach to the problem of action-angle variables”, Arch. Ration. Mech. Anal., 229:2 (2018), 789–833
  32. Nguyen Tien Zung, “Torus actions and integrable systems”, Topological methods in the theory of integrable systems, Cambridge Sci. Publ., Cambridge, 2006, 289–328

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Jovanović B.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).