Полуправильные решения эллиптических краевых задач с разрывными нелинейностями экспоненциального роста

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучается эллиптическая краевая задача с разрывной нелинейностью экспоненциального роста на бесконечности. Вариационным методом получена теорема существования слабого полуправильного решения исследуемой задачи. Полуправильность решения означает, что его значения почти всюду в области, в которой рассматривается краевая задача, являются точками непрерывности нелинейности по фазовой переменной. Вариационный подход в настоящей работе базируется на понятии квазипотенциального оператора, в отличие от традиционного, где используется обобщенная производная Кларка.Библиография: 29 названий.

Об авторах

Вячеслав Николаевич Павленко

Челябинский государственный университет

Email: pavlenko-vn@yandex.ru
доктор физико-математических наук, профессор

Дмитрий Константинович Потапов

Санкт-Петербургский государственный университет

Email: d.potapov@spbu.ru
кандидат физико-математических наук, доцент

Список литературы

  1. M. de Souza, E. de Medeiros, U. Severo, “On a class of quasilinear elliptic problems involving Trudinger–Moser nonlinearities”, J. Math. Anal. Appl., 403:2 (2013), 357–364
  2. M. de Souza, E. de Medeiros, U. Severo, “On a class of nonhomogeneous elliptic problems involving exponential critical growth”, Topol. Methods Nonlinear Anal., 44:2 (2014), 399–412
  3. M. de Souza, “Existence of solutions to equations of $N$-Laplacian type with Trudinger–Moser nonlinearities”, Appl. Anal., 93:10 (2014), 2111–2125
  4. M. de Souza, “On a class of nonhomogeneous elliptic equation on compact Riemannian manifold without boundary”, Mediterr. J. Math., 15:3 (2018), 101, 11 pp.
  5. M. de Souza, “On a class of nonhomogeneous elliptic equations on noncompact Riemannian manifolds”, Complex Var. Elliptic Equ., 64:3 (2019), 386–397
  6. C. O. Alves, J. A. Santos, “Multivalued elliptic equation with exponential critical growth in $mathbb R^2$”, J. Differential Equations, 261:9 (2016), 4758–4788
  7. S. Carl, S. Heikkilä, “Elliptic problems with lack of compactness via a new fixed point theorem”, J. Differential Equations, 186:1 (2002), 122–140
  8. J. Moser, “A sharp form of an inequality by N. Trudinger”, Indiana Univ. Math. J., 20:11 (1971), 1077–1092
  9. N. S. Trudinger, “On imbeddings into Orlicz spaces and some applications”, J. Math. Mech., 17:5 (1967), 473–483
  10. М. А. Красносельский, А. В. Покровский, “Правильные решения уравнений с разрывными нелинейностями”, Докл. АН СССР, 226:3 (1976), 506–509
  11. М. А. Красносельский, А. В. Покровский, “Об эллиптических уравнениях с разрывными нелинейностями”, Докл. РАН, 342:6 (1995), 731–734
  12. В. Н. Павленко, Д. К. Потапов, “Существование полуправильных решений эллиптических спектральных задач с разрывными нелинейностями”, Матем. сб., 206:9 (2015), 121–138
  13. М. А. Красносельский, А. В. Лусников, “Правильные неподвижные точки и устойчивые инвариантные множества монотонных операторов”, Функц. анализ и его прил., 30:3 (1996), 34–46
  14. В. Н. Павленко, Д. К. Потапов, “Существование двух нетривиальных решений в задачах на собственные значения для уравнений с разрывными правыми частями при достаточно больших значениях спектрального параметра”, Матем. сб., 208:1 (2017), 165–182
  15. В. Н. Павленко, Д. К. Потапов, “Существование трех нетривиальных решений эллиптической краевой задачи с разрывной нелинейностью в случае сильного резонанса”, Матем. заметки, 101:2 (2017), 247–261
  16. В. Н. Павленко, Д. К. Потапов, “О свойствах спектра эллиптической краевой задачи с параметром и разрывной нелинейностью”, Матем. сб., 210:7 (2019), 145–170
  17. В. Н. Павленко, Д. К. Потапов, “Об одном классе эллиптических краевых задач с параметром и разрывной нелинейностью”, Изв. РАН. Сер. матем., 84:3 (2020), 168–184
  18. В. Н. Павленко, Д. К. Потапов, “О существовании трех нетривиальных решений резонансной эллиптической краевой задачи с разрывной нелинейностью”, Дифференц. уравнения, 56:7 (2020), 861–871
  19. В. Н. Павленко, Д. К. Потапов, “Существование полуправильных решений эллиптических систем с разрывными нелинейностями”, Матем. заметки, 110:2 (2021), 239–257
  20. В. Н. Павленко, Д. К. Потапов, “Вариационный метод для эллиптических систем с разрывными нелинейностями”, Матем. сб., 212:5 (2021), 133–152
  21. В. Н. Павленко, “О разрешимости некоторых нелинейных уравнений с разрывными операторами”, Докл. АН СССР, 204:6 (1972), 1320–1323
  22. В. Н. Павленко, “Вариационный метод для уравнений с разрывными операторами”, Вестник ЧелГУ, 1994, № 2, 87–95
  23. В. Н. Павленко, Д. К. Потапов, “О существовании луча собственных значений для уравнений с разрывными операторами”, Сиб. матем. журн., 42:4 (2001), 911–919
  24. М. А. Красносельский, Я. Б. Рутицкий, Выпуклые функции и пространства Орлича, Физматгиз, М., 1958, 271 с.
  25. М. М. Вайнберг, Вариационный метод и метод монотонных операторов в теории нелинейных уравнений, Наука, М., 1972, 416 с.
  26. В. Н. Павленко, “Теоремы существования для эллиптических вариационных неравенств с квазипотенциальными операторами”, Дифференц. уравнения, 24:8 (1988), 1397–1402
  27. А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, 3-е изд., Наука, М., 1972, 496 с.
  28. В. Н. Павленко, “Существование решений у нелинейных уравнений с разрывными монотонными операторами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1973, № 6, 21–29
  29. Н. Данфорд, Дж. Т. Шварц, Линейные операторы, т. 2, Спектральная теория. Самосопряженные операторы в гильбертовом пространстве, Мир, М., 1966, 1063 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Павленко В.Н., Потапов Д.К., 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».