Singularities on toric fibrations

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper we investigate singularities on toric fibrations. In this context we study a conjecture of Shokurov (a special case of which is due to M\textsuperscript{c}Kernan) which roughly says that if $(X,B)\to Z$ is an $\varepsilon$-lc Fano-type log Calabi-Yau fibration, then the singularities of the log base $(Z,B_Z+M_Z)$ are bounded in terms of $\varepsilon$ and $\dim X$ where $B_Z$ and $M_Z$ are the discriminant and moduli divisors of the canonical bundle formula. A corollary of our main result says that if $X\to Z$ is a toric Fano fibration with $X$ being $\varepsilon$-lc, then the multiplicities of the fibres over codimension one points are bounded depending only on $\varepsilon$ and $\dim X$. Bibliography: 20 titles.

作者简介

Caucher Birkar

University of Cambridge

Email: c.birkar@dpmms.cam.ac.uk

Yifei Chen

Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences

PhD

参考

  1. V. Alexeev, A. Borisov, “On the log discrepancies in toric Mori contractions”, Proc. Amer. Math. Soc., 142:11 (2014), 3687–3694
  2. F. Ambro, “The moduli $b$-divisor of an lc-trivial fibration”, Compos. Math., 141:2 (2005), 385–403
  3. F. Ambro, The Adjunction Conjecture and its applications
  4. C. Birkar, “Singularities on the base of a Fano type fibration”, J. Reine Angew. Math., 2016:715 (2016), 125–142
  5. C. Birkar, Singularities of linear systems and boundedness of Fano varieties
  6. C. Birkar, Log Calabi–Yau fibrations
  7. C. Birkar, Generalised pairs in birational geometry
  8. А. А. Борисов, Л. А. Борисов, “Особые торические многообразия Фано”, Матем. сб., 183:2 (1992), 134–141
  9. C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468
  10. C. Birkar, De-Qi Zhang, “Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs”, Publ. Math. Inst. Hautes Etudes Sci., 123 (2016), 283–331
  11. D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp.
  12. S. Filipazzi, On a generalized canonical bundle formula and generalized adjunction
  13. W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp.
  14. Y. Kawamata, “Subadjunction of log canonical divisors for a subvariety of codimension 2”, Birational algebraic geometry, A conference on algebraic geometry in memory of Wei-Liang Chow (1911–1995) (Baltimore, MD, 1996), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 79–88
  15. Y. Kawamata, “Subadjunction of log canonical divisors. II”, Amer. J. Math., 120:5 (1998), 893–899
  16. J. Kollar, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
  17. K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002, xxiv+478 pp.
  18. S. Mori, Yu. Prokhorov, “On $mathbb Q$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369
  19. S. Mori, Yu. G. Prokhorov, “Multiple fibers of del Pezzo fibrations”, Многомерная алгебраическая геометрия, Сборник статей. Посвящается памяти члена-корреспондента РАН Василия Алексеевича Исковских, Тр. МИАН, 264, МАИК «Наука/Интерпериодика», М., 2009, 137–151
  20. T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Transl. from the Japan., Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Биркар К., Чен Й., 2021

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).