Singularities on toric fibrations
- Authors: Birkar C.1, Chen Y.2
-
Affiliations:
- University of Cambridge
- Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences
- Issue: Vol 212, No 3 (2021)
- Pages: 20-38
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/142350
- DOI: https://doi.org/10.4213/sm9446
- ID: 142350
Cite item
Abstract
In this paper we investigate singularities on toric fibrations. In this context we study a conjecture of Shokurov (a special case of which is due to M\textsuperscript{c}Kernan) which roughly says that if $(X,B)\to Z$ is an $\varepsilon$-lc Fano-type log Calabi-Yau fibration, then the singularities of the log base $(Z,B_Z+M_Z)$ are bounded in terms of $\varepsilon$ and $\dim X$ where $B_Z$ and $M_Z$ are the discriminant and moduli divisors of the canonical bundle formula. A corollary of our main result says that if $X\to Z$ is a toric Fano fibration with $X$ being $\varepsilon$-lc, then the multiplicities of the fibres over codimension one points are bounded depending only on $\varepsilon$ and $\dim X$. Bibliography: 20 titles.
About the authors
Caucher Birkar
University of Cambridge
Email: c.birkar@dpmms.cam.ac.uk
Yifei Chen
Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of SciencesPhD
References
- V. Alexeev, A. Borisov, “On the log discrepancies in toric Mori contractions”, Proc. Amer. Math. Soc., 142:11 (2014), 3687–3694
- F. Ambro, “The moduli $b$-divisor of an lc-trivial fibration”, Compos. Math., 141:2 (2005), 385–403
- F. Ambro, The Adjunction Conjecture and its applications
- C. Birkar, “Singularities on the base of a Fano type fibration”, J. Reine Angew. Math., 2016:715 (2016), 125–142
- C. Birkar, Singularities of linear systems and boundedness of Fano varieties
- C. Birkar, Log Calabi–Yau fibrations
- C. Birkar, Generalised pairs in birational geometry
- А. А. Борисов, Л. А. Борисов, “Особые торические многообразия Фано”, Матем. сб., 183:2 (1992), 134–141
- C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468
- C. Birkar, De-Qi Zhang, “Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs”, Publ. Math. Inst. Hautes Etudes Sci., 123 (2016), 283–331
- D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp.
- S. Filipazzi, On a generalized canonical bundle formula and generalized adjunction
- W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp.
- Y. Kawamata, “Subadjunction of log canonical divisors for a subvariety of codimension 2”, Birational algebraic geometry, A conference on algebraic geometry in memory of Wei-Liang Chow (1911–1995) (Baltimore, MD, 1996), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 79–88
- Y. Kawamata, “Subadjunction of log canonical divisors. II”, Amer. J. Math., 120:5 (1998), 893–899
- J. Kollar, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
- K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002, xxiv+478 pp.
- S. Mori, Yu. Prokhorov, “On $mathbb Q$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369
- S. Mori, Yu. G. Prokhorov, “Multiple fibers of del Pezzo fibrations”, Многомерная алгебраическая геометрия, Сборник статей. Посвящается памяти члена-корреспондента РАН Василия Алексеевича Исковских, Тр. МИАН, 264, МАИК «Наука/Интерпериодика», М., 2009, 137–151
- T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Transl. from the Japan., Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp.
Supplementary files

