Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 214, No 1 (2023)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Sharp Bernstein-type inequalities for Fourier-Dunkl multipliers

Vinogradov O.L.

Abstract

A method for the proof of analogues of the classical Bernstein, Riesz and Boas inequalities for differentiation and difference operators defined by means of multipliers in terms of the Fourier-Dunkl transform is developed. This method is based on Civin-type interpolation formulae. Some of the inequalities obtained are sharp in the uniform norm. Bibliography: 42 titles.
Matematicheskii Sbornik. 2023;214(1):3-30
pages 3-30 views

Jordan property for groups of bimeromorphic automorphisms of compact Kähler threefolds

Golota A.S.

Abstract

Let $X$ be a nonuniruled compact Kähler space of dimension $3$. We show that the group of bimeromorphic automorphisms of $X$ is Jordan. More generally, the same result holds for any compact Kähler space admitting a quasi-minimal model.Bibliography: 29 titles.
Matematicheskii Sbornik. 2023;214(1):31-42
pages 31-42 views

Structure of the spectrum of a nonselfadjoint Dirac operator

Makin A.S.

Abstract

For the Dirac operator with two-point boundary conditions and an arbitrary complex-valued $L_2$-integrable potential $V(x)$ the spectral problem is considered. Necessary and sufficient conditions on an entire function to be the characteristic function of such a boundary value problem are obtained. Necessary and sufficient conditions on the spectrum of the above operator are established in the case when the boundary conditions are regular. Bibliography: 16 titles.
Matematicheskii Sbornik. 2023;214(1):43-60
pages 43-60 views

‘Far interaction’ of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain

Nazarov S.A.

Abstract

A formally selfadjoint system of second-order differential equations is considered in a three-dimensional domain on small parts of whose boundary an analogue of Steklov spectral conditions is set, while the Neumann boundary conditions are set on the rest of the boundary. Under certain algebraic and geometric conditions an asymptotic expression for the eigenvalues of this problem is presented and a limiting problem is put together, which produces the leading asymptotic terms and involves systems of integro-differential equations in half-spaces, interconnected by means of certain integral characteristics of vector-valued eigenfunctions. One example of a concrete problem in mathematical physics describes surface waves in several ice holes made in the ice cover of a water basin, and the asymptotic formula for eigenfrequencies shows that the local wave processes interact independently of the distance between the holes. Another series of applied problems relates to elastic fixings of bodies along small pieces of their surfaces. Possible generalizations are discussed; a number of related open questions are stated. Bibliography: 41 titles.
Matematicheskii Sbornik. 2023;214(1):61-112
pages 61-112 views

On the sharp Baer-Suzuki theorem for the $\pi$-radical of a finite group

Yang N., Wu Z., Revin D.O., Vdovin E.P.

Abstract

Let $\pi$ be a proper subset of the set of prime numbers. Denote by $r$ the least prime not contained in $\pi$ and set $m=r$ for $r=2$ and $3$ and $m=r-1$ for $r\ge5$. The conjecture under consideration claims that a conjugacy class $D$ of a finite group $G$ generates a $\pi$-subgroup of $G$ (equivalently, is contained in the $\pi$-radical) if and only if any $m$ elements of $D$ generate a $\pi$-group. It is shown that this conjecture holds if every non-Abelian composition factor of $G$ is isomorphic to a sporadic, an alternating, a linear, or a unitary simple group. Bibliography: 49 titles.
Matematicheskii Sbornik. 2023;214(1):113-154
pages 113-154 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».