Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 216, Nº 2 (2025)

Lyapunov stability of an equilibrium of the nonlocal continuity equation

Averboukh Y., Volkov A.

Resumo

The paper is devoted to developing Lyapunov's methods for analyzing the stability of an equilibrium of a dynamical system in the space of probability measures that is defined by a nonlocal continuity equation. Sufficient stability conditions are obtained based on the basis of an analysis of the behaviour of a nonsmooth Lyapunov function in a neighbourhood of the equilibrium and the investigation of a certain quadratic form defined on the tangent space of the space of probability measures. The general results are illustrated by the study of the stability of an equilibrium for a gradient flow in the space of probability measures and the Gibbs measure for a system of connected simple pendulums. Bibliography: 28 titles.
Matematicheskii Sbornik. 2025;216(2):3-31
pages 3-31 views

The most symmetric smooth cubic surface

Vikulova A.

Resumo

We give a classification of the largest automorphism groups of smooth cubic surfaces over arbitrary fields. Moreover, we prove that, given a field, a smooth cubic surface with the largest automorphism group is unique up to isomorphism.Bibliography: 19 titles.
Matematicheskii Sbornik. 2025;216(2):32-80
pages 32-80 views

John–Löwner ellipsoids and entropy of multiplier operators on rank $1$ compact homogeneous manifolds

Kushpel' A.

Resumo

We present a new method of the evaluation of entropy, which is based on volume estimates for John–Löwner ellipsoids induced by the eigenfunctions of Laplace–Beltrami operator on compact homogeneous manifolds $\mathbb{M}^{d}$ of rank $1$. This approach gives the sharp orders of entropy in the situations where the known methods meet difficulties of fundamental nature. In particular, we calculate the sharp orders of the entropy of the Sobolev classes $W_{p}^{\gamma }(\mathbb{M}^{d})$, $\gamma>0$, in $L_{q}(\mathbb{M}^{d})$, $1 \leq q \leq p \leq \infty$. Bibliography: 35 titles.

Matematicheskii Sbornik. 2025;216(2):81-109
pages 81-109 views

Uniform rational approximation of the odd and even Cauchy transforms

Mardvilko T.

Resumo

Best uniform rational approximations of the odd and even Cauchy transforms are considered. The results obtained form a basis for finding the weak asymptotics of best uniform rational approximations of the odd extension of the function $x^{\alpha}$, $x\in[0,1]$, to $[-1,1]$ for all $alpha\in(0,+\infty)\setminus(2\mathbb N-1)$, which complements some results due to Vyacheslavov. The strong asymptotics of the best rational approximations of this function on $[0,1]$ and its even extension to $[-1,1]$ were found by Stahl. It follows from these results that for $alpha\in(0,+\infty)\setminus\mathbb N$ the best rational approximations of the even and odd extensions of the above function show the same weak asymptotic behaviour. Bibliography: 29 titles.

Matematicheskii Sbornik. 2025;216(2):110-127
pages 110-127 views

Properties of at most countable unions of pairwise disjoint sets in asymmetric spaces

Tsar'kov I.

Resumo

We show that an at most countable nonsingleton union of pairwise disjoint proximinal sets is not a Chebyshev set. We also characterize the asymmetric linear spaces where each boundedly compact (approximatively compact) set is proximinal.Bibliography: 32 titles.

Matematicheskii Sbornik. 2025;216(2):128-144
pages 128-144 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).