The most symmetric smooth cubic surface

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We give a classification of the largest automorphism groups of smooth cubic surfaces over arbitrary fields. Moreover, we prove that, given a field, a smooth cubic surface with the largest automorphism group is unique up to isomorphism.Bibliography: 19 titles.

About the authors

Anastasia Vadimovna Vikulova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: vikulovaav@gmail.com
without scientific degree

References

  1. B. Banwait, F. Fite, D. Loughran, “Del Pezzo surfaces over finite fields and their Frobenius traces”, Math. Proc. Cambridge Philos. Soc., 167:1 (2019), 35–60
  2. A. Beauville, “Finite subgroups of $operatorname{PGL}_2(K)$”, Vector bundles and complex geometry, Contemp. Math., 522, Amer. Math. Soc., Providence, RI, 2010, 23–29
  3. S. Bosch, W. Lütkebohmert, M. Raynaud, Neron models, Ergeb. Math. Grenzgeb. (3), 21, Springer-Verlag, Berlin, 1990, x+325 pp.
  4. R. W. Carter, “Conjugacy classes in the Weyl group”, Compos. Math., 25 (1972), 1–59
  5. Yifei Chen, C. Shramov, “Automorphisms of surfaces over fields of positive characteristic”, Geom. Topol., 28:6 (2024), 2747–2791
  6. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985, xxxiv+252 pp.
  7. I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp.
  8. I. Dolgachev, A. Duncan, “Automorphisms of cubic surfaces in positive characteristic”, Изв. РАН. Сер. матем., 83:3 (2019), 15–92
  9. D. S. Dummit, R. M. Foote, Abstract algebra, 3rd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004, xii+932 pp.
  10. А. Л. Городенцев, Алгебра, Учебник для студентов-математиков, МЦНМО, М., 2013, 486 с.
  11. T. Hosoh, “Automorphism groups of cubic surfaces”, J. Algebra, 192:2 (1997), 651–677
  12. С. Ленг, Алгебра, Мир, М., 1968, 564 с.
  13. C. Liedtke, “Morphisms to Brauer–Severi varieties, with applications to del Pezzo surfaces”, Geometry over nonclosed fields, Simons Symp., Springer, Cham, 2017, 157–196
  14. Ю. И. Манин, Кубические формы: алгебра, геометрия, арифметика, Наука, М., 1972, 304 с.
  15. C. Shramov, V. Vologodsky, “Automorphisms of pointless surfaces”
  16. J. M. Smith, “Groups acting on cubic surfaces in characteristic zero”
  17. H. P. F. Swinnerton-Dyer, “The zeta function of a cubic surface over a finite field”, Proc. Cambridge Philos. Soc., 63 (1967), 55–71
  18. A. V. Vikulova, “The most symmetric smooth cubic surface over a finite field of characteristic $2$”, Finite Fields Appl., 98 (2024), 102470, 25 pp.
  19. А. В. Зайцев, “Формы поверхностей дель Пеццо степеней $5$ и $6$”, Матем. сб., 214:6 (2023), 69–86

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Vikulova A.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).