Spectra and joint dynamics of Poisson suspensions over rank-one automorphisms
- Authors: Ryzhikov V.V.1
-
Affiliations:
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Issue: Vol 217, No 1 (2026)
- Pages: 98-113
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/378951
- DOI: https://doi.org/10.4213/sm10228
- ID: 378951
Cite item
Abstract
For each integer $n>1$ a unitary operator of dynamical origin is found such that its $n$ th tensor power has a singular spectrum, but the spectrum of the $(n+1)$ st power is absolutely continuous. For any sequences $p(n)$ and $q(n)$ , provided that $ p(n+1)- p(n) \to+\infty$ and $ q(n+1)- q(n)\to +\infty$ , there exist a set $C$ and automorphisms $S$ and $T$ with simple singular spectra such that the sequence $ \sum_{n=1}^{N} \mu(S^{ p(n)}C\cap T^{ q(n)}C)/N$ is divergent. In the class of Poisson suspensions with zero entropy there exist mixing automorphisms $S$ and $T$ such that for some set $D$ of positive measure, $S^nD\cap T^nD=\varnothing$ for each $n>0$ .
About the authors
Valerii Valentinovich Ryzhikov
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Email: vryzh@mail.ru
Doctor of physico-mathematical sciences, no status
References
- N. Frantzikinakis, B. Host, “Multiple recurrence and convergence without commutativity”, J. Lond. Math. Soc. (2), 107:5 (2023), 1635–1659
- T. Austin, “Non-convergence of some non-commuting double ergodic averages”, Proc. Amer. Math. Soc., 153:4 (2025), 1701–1707
- Wen Huang, Song Shao, Xiangdong Ye, A counterexample on multiple convergence without commutativity
- Wen Huang, Song Shao, Xiangdong Ye, “A counterexample on polynomial multiple convergence without commutativity”, Bull. Soc. Math. France, 152:1 (2024), 149–168
- Z. Kosloff, S. Sanadhya, Multidimensional local limit theorem in deterministic systems and an application to non-convergence of polynomial multiple averages
- D. Rudolph, “An example of a measure preserving map with minimal self-joinings, and applications”, J. Anal. Math., 35 (1979), 97–122
- I. Loh, C. E. Silva, “Strict doubly ergodic infinite transformations”, Dyn. Syst., 32:4 (2017), 519–543
- È. Janvresse, T. Meyerovitch, E. Roy, T. de la Rue, “Poisson suspensions and entropy for infinite transformations”, Trans. Amer. Math. Soc., 362:6 (2010), 3069–3094
- F. Parreau, E. Roy, “Prime Poisson suspensions”, Ergodic Theory Dynam. Systems, 35:7 (2015), 2216–2230
Supplementary files

