Explicit formulae for extremals in sub-Lorentzian and Finsler problems on 2D and 3D Lie groups

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Questions relating to the search of geodesics in a series of left-invariant problems with sub-Lorentzian and Finsler structure are under consideration. Explicit formulae for extremals are found in terms of trigonometric functions of convex trigonometry. In sub-Lorentzian problems the machinery of the new trigonometric functions $\sinh_\Omega$ and $\cosh_\Omega$, generalizing $\sinh$ and $\cosh$ to the case of an unbounded convex set $\Omega\subset\mathbb R^2$, is particularly useful.

About the authors

Evgeny Aleksandrovich Ladeishchikov

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Email: evgen310864@gmail.com
without scientific degree, no status

Lev Vyacheslavovich Lokutsievskiy

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: lion.lokut@gmail.com
ORCID iD: 0000-0002-8083-4296
Scopus Author ID: 35148203500
ResearcherId: ABE-7153-2021
Doctor of physico-mathematical sciences, no status

Nikita Vladimirovich Prilepin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Email: nickprilepin@yandex.ru

References

  1. M. Grochowski, “Geodesics in the sub-Lorentzian geometry”, Bull. Polish Acad. Sci. Math., 50:2 (2002), 161–178
  2. M. Grochowski, “Properties of reachable sets in the sub-Lorentzian geometry”, J. Geom. Phys., 59:7 (2009), 885–900
  3. Der-Chen Chang, I. Markina, A. Vasil'ev, “Sub-Lorentzian geometry on anti-de Sitter space”, J. Math. Pures Appl. (9), 90:1 (2008), 82–110
  4. E. Grong, A. Vasil'ev, “Sub-Riemannian and sub-Lorentzian geometry on $operatorname{SU}(1,1)$ and on its universal cover”, J. Geom. Mech., 3:2 (2011), 225–260
  5. A. Korolko, I. Markina, “Nonholonomic Lorentzian geometry on some $mathbb H$-type groups”, J. Geom. Anal., 19:4 (2009), 864–889
  6. V. Yu. Protasov, “Antinorms on cones: duality and applications”, Linear Multilinear Algebra, 70:22 (2022), 7387–7413
  7. A. A. Ardentov, L. V. Lokutsievskiy, Yu. L. Sachkov, “Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry”, ESAIM Control Optim. Calc. Var., 27 (2021), 32, 52 pp.
  8. Yu. L. Sachkov, “Lorentzian distance on the Lobachevsky plane”, Nonlinearity, 37:9 (2024), 095027, 35 pp.
  9. A. Agrachev, D. Barilari, “Sub-Riemannian structures on 3D Lie groups”, J. Dyn. Control Syst., 18:1 (2012), 21–44
  10. L. V. Lokutsievskiy, “Explicit formulae for geodesics in left-invariant sub-Finsler problems on Heisenberg groups via convex trigonometry”, J. Dyn. Control Syst., 27:4 (2021), 661–681

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Ladeishchikov E.A., Lokutsievskiy L.V., Prilepin N.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).