On 2-categories of extensions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper is essentially an illustration to the general technique of homotopical enhancements developed recently in [6]. Taking a derived category of an abelian category we consider its full subcategory generated by complexes of length 2. It has a natural refinement to a 2-category, which we call the ‘2-category of extensions’. However, it is not possible to construct this refinement by only using a triangulated structure. In this short note, first we construct a 2-category of enhancements by hand, using the techniques of abelian categories, and then we show how it can quite easily and naturally be recovered in the framework of the enhanced formalism of [6].

About the authors

Dmitry Borisovich Kaledin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; National Research University Higher School of Economics, Moscow, Russia

Email: kaledin@mi-ras.ru
Scopus Author ID: 12790495100
ResearcherId: T-5886-2017
Doctor of physico-mathematical sciences, no status

References

  1. W. G. Dwyer, P. S. Hirschhorn, D. M. Kan, J. H. Smith, Homotopy limit functors on model categories and homotopical categories, Math. Surveys Monogr., 113, Amer. Math. Soc., Providence, RI, 2004, viii+181 pp.
  2. A. Grothendieck, “Categories fibrees et descente”, Revêtements etales et groupe fondamental, Seminaire de geometrie algebrique du Bois Marie 1960–1961 (SGA 1), Lecture Notes in Math., 224, Springer-Verlag, Berlin–New York, 1971, Exp. VI, 145–194
  3. D. Kaledin, “How to glue derived categories”, Bull. Math. Sci., 8:3 (2018), 477–602
  4. D. Kaledin, Trace theories, Bökstedt periodicity and Bott periodicity
  5. D. Kaledin, Enhancement for categories and homotopical algebra
  6. D. B. Kaledin, “How to enhance categories, and why?”, УМН, 80:2(482) (2025), 51–122
  7. J.-L. Verdier, Des categories derivees des categories abeliennes, Asterisque, 239, Soc. Math. France, Paris, 1996, xii+253 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kaledin D.B.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).