Unitary transform diagonalizing the Confluent Hypergeometric kernel
- 作者: Gorbunov S.M.1,2,3
-
隶属关系:
- Ivannikov Institute for System Programming of the Russian Academy of Science, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- 期: 卷 216, 编号 12 (2025)
- 页面: 3-24
- 栏目: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/358682
- DOI: https://doi.org/10.4213/sm10319
- ID: 358682
如何引用文章
详细
作者简介
Sergei Gorbunov
Ivannikov Institute for System Programming of the Russian Academy of Science, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Email: gorbunov.sm@phystech.edu
参考
- G. Szegő, Collected papers, v. I, Contemp. Mathematicians, 1915–1927, Birkhäuser, Boston, MA, 1982, xx+857 pp.
- E. L. Basor, Yang Chen, “Toeplitz determinants from compatibility conditions”, Ramanujan J., 16:1 (2008), 25–40
- E. L. Basor, T. Ehrhardt, “Asymptotics of determinants of Bessel operators”, Comm. Math. Phys., 234:3 (2003), 491–516
- E. L. Basor, H. Widom, “Determinants of Airy operators and applications to random matrices”, J. Stat. Phys., 96:1-2 (1999), 1–20
- A. Borodin, P. Deift, “Fredholm determinants, Jimbo–Miwa–Ueno $tau$-functions, and representation theory”, Comm. Pure Appl. Math., 55:9 (2002), 1160–1230
- A. Borodin, G. Olshanski, “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223:1 (2001), 87–123
- P. Bourgade, A. Nikeghbali, A. Rouault, “Ewens measures on compact groups and hypergeometric kernels”, Seminaire de Probabilites XLIII, Lecture Notes in Math., 2006, Springer, Berlin, 2011, 351–377
- A. I. Bufetov, Yanqi Qiu, A. Shamov, “Kernels of conditional determinantal measures and the Lyons–Peres completeness conjecture”, J. Eur. Math. Soc. (JEMS), 23:5 (2021), 1477–1519
- P. Deift, I. Krasovsky, J. Vasilevska, “Asymptotics for a determinant with a confluent hypergeometric kernel”, Int. Math. Res. Not. IMRN, 2011:9 (2011), 2117–2160
- O. Macchi, “The coincidence approach to stochastic point processes”, Adv. in Appl. Probab., 7 (1975), 83–122
- W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987, xiv+416 pp.
- B. Simon, Orthogonal polynomials on the unit circle, Part 1. Classical theory, Amer. Math. Soc. Colloq. Publ., 54, Part 1, Amer. Math. Soc., Providence, RI, 2005, xxvi+466 pp.
- B. Simon, Trace ideals and their applications, Math. Surveys Monogr., 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005, viii+150 pp.
- B. Simon, Operator theory, Compr. Course Anal., 4, Amer. Math. Soc., Providence, RI, 2015, xviii+749 pp.
- T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes”, J. Funct. Anal., 205:2 (2003), 414–463
- T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties”, Ann. Probab., 31:3 (2003), 1533–1564
- C. A. Tracy, H. Widom, “Level-spacing distributions and the Airy kernel”, Phys. Lett. B, 305:1-2 (1993), 115–118
- C. A. Tracy, H. Widom, “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161:2 (1994), 289–309
- H. Widom, “A trace formula for Wiener–Hopf operators”, J. Operator Theory, 8:2 (1982), 279–298
补充文件
