Unique expansions in number systems via refinement equations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the subdivision scheme theory we develop a criterion to check if each natural number has at most one representation in the $n$-ary number system with a set of nonnegative integer digits $A=\{a_1, a_2,…, a_n\}$ that contains zero. This uniqueness property is shown to be equivalent to a certain restriction on the zeros of the trigonometric polynomial $\sum_{k=1}^n e^{-2\pi i a_k t}$. From this criterion, under a natural condition of irreducibility for $A$, we deduce that in the case of a prime number $n$ uniqueness holds if and only if the digits of $A$ are distinct modulo $n$, whereas for any composite $n$ we show that the latter condition is not necessary. We also establish a connection of this uniqueness with the problem of semigroup freeness for affine integer functions of equal integer slope; in combination with the two criteria, this allows us to fill the gap in a work of Klarner on the question of Erdős about the densities of affine integer orbits and to establish a simple algorithm to check freeness and the positivity of density in the case when the slope is a prime number.

About the authors

Sergei Vladimirovich Konyagin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: konyagin@mi-ras.ru
ORCID iD: 0000-0002-9669-5446
Scopus Author ID: 6701482885
ResearcherId: Q-4807-2016
Doctor of physico-mathematical sciences, Professor

Vladimir Yur'evich Protasov

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, University of L'Aquila, L'Aquila, Italy; Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Email: vladimir.protasov@univaq.it
ORCID iD: 0000-0002-2410-2971
Scopus Author ID: 7005728944
ResearcherId: C-8550-2016
Doctor of physico-mathematical sciences, no status

Alexey Leonidovich Talambutsa

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; Laboratory of Theoretical Computer Science, National Research University Higher School of Economics, Moscow, Russia

Email: altal@mi-ras.ru
ORCID iD: 0000-0002-1237-9682
Scopus Author ID: 8958606200
ResearcherId: Q-4532-2016
Candidate of physico-mathematical sciences, no status

References

  1. J. Cassaigne, T. Harju, J. Karhumäki, “On the undecidability of freeness of matrix semigroups”, Internat. J. Algebra Comput., 9:3-4 (1999), 295–305
  2. A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp.
  3. G. M. Chaikin, “An algorithm for high-speed curve generation”, Comput. Graphics and Image Processing, 3:4 (1974), 346–349
  4. G. de Rham, “Sur une courbe plane”, J. Math. Pures Appl. (9), 35 (1956), 25–42
  5. G. de Rham, “Sur les courbes limites de polygones obtenus par trisection”, Enseign. Math. (2), 5 (1959), 29–43
  6. N. Dyn, J. A. Gregory, D. Levin, “Analysis of uniform binary subdivision schemes for curve design”, Constr. Approx., 7:2 (1991), 127–147
  7. N. Dyn, D. Levin, “Subdivision schemes in geometric modelling”, Acta Numer., 11 (2002), 73–144
  8. P. Erdős, R. L. Graham, Old and new problems and results in combinatorial number theory, Monogr. Enseign. Math., 28, Univ. de Genève, Enseignement Math., Geneva, 1980, 128 pp.
  9. De-Jun Feng, N. Sidorov, “Growth rate for beta-expansions”, Monatsh. Math., 162:1 (2011), 41–60
  10. J. Honkala, “Unique representation in number systems and $L$ codes”, Discrete Appl. Math., 4:3 (1982), 229–232
  11. J. Honkala, “On number systems with finite degree of ambiguity”, Inform. and Comput., 145:1 (1998), 51–63
  12. J. E. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747
  13. J. Jankauskas, J. M. Thuswaldner, “Rational matrix digit systems”, Linear Multilinear Algebra, 71:10 (2023), 1606–1639
  14. D. A. Klarner, “An algorithm to determine when certain sets have $0$-density”, J. Algorithms, 2:1 (1981), 31–43
  15. D. A. Klarner, “A sufficient condition for certain semigroups to be free”, J. Algebra, 74:1 (1982), 140–148
  16. D. A. Klarner, J.-C. Birget, W. Satterfield, “On the undecidability of the freeness of integer matrix semigroups”, Internat. J. Algebra Comput., 1:2 (1991), 223–226
  17. A. Kolpakov, A. Talambutsa, “On free semigroups of affine maps on the real line”, Proc. Amer. Math. Soc., 150:6 (2022), 2301–2307
  18. J. C. Lagarias, “Erdős, Klarner, and the $3x+1$ problem”, Amer. Math. Monthly, 123:8 (2016), 753–776
  19. J. C. Lagarias, Yang Wang, “Integral self-affine tiles in $mathbb R^n$. I. Standard and nonstandard digit sets”, J. London Math. Soc. (2), 54:1 (1996), 161–179
  20. Jian-Lin Li, “Digit sets of integral self-affine tiles with prime determinant”, Studia Math., 177:2 (2006), 183–194
  21. H. A. Maurer, A. Salomaa, D. Wood, “$mathrm L$ codes and number systems”, Theoret. Comput. Sci., 22:3 (1983), 331–346
  22. C. A. Micchelli, H. Prautzsch, “Uniform refinement of curves”, Linear Algebra Appl., 114/115 (1989), 841–870
  23. V. Protasov, “Refinement equations with nonnegative coefficients”, J. Fourier Anal. Appl., 6:1 (2000), 55–78
  24. V. Yu. Protasov, “The Euler binary partition function and subdivision schemes”, Math. Comp., 86:305 (2017), 1499–1524

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Konyagin S.V., Protasov V.Y., Talambutsa A.L.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).