Some lower bounds for optimal sampling recovery of functions with mixed smoothness

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Recently there was a substantial progress in the problem of sampling recovery on function classes with mixed smoothness. It was mostly done by proving new and sometimes optimal upper bounds for both linear sampling recovery and nonlinear sampling recovery. In this paper we address the problem of lower bounds for the optimal rates of nonlinear sampling recovery. In the case of linear recovery one can use the well-developed theory of estimating the Kolmogorov and linear widths to establish some lower bounds for the optimal rates. In the case of nonlinear recovery we cannot use the above approach. It seems like the only technique which is available now is based on some simple observations. We demonstrate how these observations can be used.

About the authors

Alexander Vladimirovich Gasnikov

Ivannikov Institute for System Programming of the Russian Academy of Science, Moscow, Russia; Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; Innopolis University, Innopolis, Russia

Email: gasnikov@yandex.ru
ORCID iD: 0000-0002-7386-039X
Scopus Author ID: 15762551000
ResearcherId: L-6371-2013
Doctor of physico-mathematical sciences, Associate professor

Vladimir Nikolaevich Temlyakov

University of South Carolina, Columbia, SC, USA; Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Email: temlyakovv@gmail.com
Doctor of physico-mathematical sciences, Professor

References

  1. M. Dolbeault, D. Krieg, M. Ullrich, “A sharp upper bound for sampling numbers in $L_2$”, Appl. Comput. Harmon. Anal., 63 (2023), 113–134
  2. F. Dai, V. Temlyakov, Universal discretization and sparse sampling recovery
  3. F. Dai, V. Temlyakov, “Random points are good for universal discretization”, J. Math. Anal. Appl., 529:1 (2024), 127570, 28 pp.
  4. F. Dai, V. Temlyakov, Lebesgue-type inequalities in sparse sampling recovery
  5. D. Dũng, V. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2018, xi+218 pp.
  6. T. Jahn, T. Ullrich, F. Voigtlaender, “Sampling numbers of smoothness classes via $ell^1$-minimization”, J. Complexity, 79 (2023), 101786, 35 pp.
  7. E. D. Kosov, V. N. Temlyakov, Bounds for the sampling discretization error and their applications to universal sampling discretization
  8. D. Krieg, M. Ullrich, “Function values are enough for $L_2$-approximation”, Found. Comput. Math., 21:4 (2021), 1141–1151
  9. D. Krieg, M. Ullrich, “Function values are enough for $L_2$-approximation: Part II”, J. Complexity, 66 (2021), 101569, 14 pp.
  10. N. Nagel, M. Schäfer, T. Ullrich, “A new upper bound for sampling numbers”, Found. Comput. Math., 22:2 (2022), 445–468
  11. V. N. Temlyakov, “On approximate recovery of functions with bounded mixed derivative”, J. Complexity, 9:1 (1993), 41–59
  12. V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp.
  13. V. Temlyakov, “On optimal recovery in $L_2$”, J. Complexity, 65 (2021), 101545, 11 pp.
  14. V. Temlyakov, Sparse sampling recovery by greedy algorithms
  15. V. Temlyakov, Sparse sampling recovery in integral norms on some function classes
  16. V. Temlyakov, T. Ullrich, “Bounds on Kolmogorov widths and sampling recovery for classes with small mixed smoothness”, J. Complexity, 67 (2021), 101575, 19 pp.
  17. J. F. Traub, G. W. Wasilkowski, H. Wozniakowski, Information-based complexity, Comput. Sci. Sci. Comput., Academic Press, Inc., Boston, MA, 1988, xiv+523 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Gasnikov A.V., Temlyakov V.N.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).