Probabilities of small deviations of a critical Galton–Watson process with infinite variance of the number of the direct descendants of particles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the asymptotic behaviour of small deviation probabilities for a critical Galton–Watson process with infinite variance of the offspring sizes of particles and apply the result obtained to investigate the structure of a reduced critical Galton-Watson process.

About the authors

Vladimir Alekseevich Vatutin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: vatutin@mi-ras.ru
Scopus Author ID: 6701377350
ResearcherId: Q-4558-2016
Doctor of physico-mathematical sciences, Professor

Elena Evgen'evna Dyakonova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Email: elena@mi-ras.ru
Scopus Author ID: 6507996691
ResearcherId: Q-6278-2016
Doctor of physico-mathematical sciences, Head Scientist Researcher

Yakubdzhan Mukhamadzhanovich Khusanbaev

V. I. Romanovskiy Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan

Email: yakubjank@mail.ru

References

  1. K. B. Athreya, “Coalescence in the recent past in rapidly growing populations”, Stochastic Process. Appl., 122:11 (2012), 3757–3766
  2. K. B. Athreya, “Coalescence in critical and subcritical Galton–Watson branching processes”, J. Appl. Probab., 49:3 (2012), 627–638
  3. K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer, Berlin, 1972, xi+287 pp.
  4. N. O'Connell, “The genealogy of branching processes and the age of our most recent common ancestor”, Adv. in Appl. Probab., 27:2 (1995), 418–442
  5. R. Durrett, “The genealogy of critical branching processes”, Stochastic Process. Appl., 8:1 (1978), 101–116
  6. K. Fleischmann, U. Prehn, “Ein Grenzwertsatz für subkritische Verzweigungsprozesse mit endlich vielen Typen von Teilchen”, Math. Nachr., 64 (1974), 357–362
  7. K. Fleischmann, R. Siegmund-Schultze, “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241
  8. S. C. Harris, S. G. G. Johnston, M. I. Roberts, “The coalescent structure of continuous-time Galton–Watson trees”, Ann. Appl. Probab., 30:3 (2020), 1368–1414
  9. O. A. Hernandez, S. Harris, J. C. Pardo, The coalescent structure of multitype continuous-time Galton–Watson trees
  10. H. Kesten, P. Ney, F. Spitzer, “The Galton–Watson process with mean one and finite variance”, Теория вероятн. и ее примен., 11:4 (1966), 579–611
  11. E. Seneta, “The Galton–Watson process with mean one”, J. Appl. Probab., 4:3 (1967), 489–495
  12. R. S. Slack, “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9:2 (1968), 139–145

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Vatutin V.A., Dyakonova E.E., Khusanbaev Y.M.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).