Universal equivalence of general linear groups over local rings with 1/2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is proved that the universal equivalence of full linear groups of order strictly greater than 2 over local, not necessarily commutative rings with 1/2 is equivalent to the coincidence of their orders and the universal equivalence of the respective rings or the universal equivalence of one ring to the ring opposite to the other.

About the authors

Galina Anatol'evna Kaleeva

Lomonosov Moscow State University, Moscow, Russia

Email: galinakaleeva@yandex.ru
without scientific degree, no status

References

  1. C. I. Beidar, A. V. Michalev, “On Malcev's theorem on elementary equivalence of linear groups”, Proceedings of the international conference on algebra, Part 1 (Novosibirsk, 1989), Contemp. Math., 131, Part 1, Amer. Math. Soc., Providence, RI, 1992, 29–35
  2. D. Segal, K. Tent, “Defining $R$ and $G(R)$”, J. Eur. Math. Soc. (JEMS), 25:8 (2023), 3325–3358
  3. N. Avni, A. Lubotsky, C. Meiri, “First order rigidity of non-uniform higher rank arithmetic groups”, Invent. Math., 217:1 (2019), 219–240
  4. A. G. Myasnikov, M. Sohrabi, Bi-interpretability with $mathbb{Z}$ and models of the complete elementary theories of $operatorname{SL}_n(O)$, $mathrm T_n(O)$ and $operatorname{GL}_n(O)$, $n geq 3$
  5. T. Y. Lam, A first course in noncommutative rings, Grad. Texts in Math., 131, Springer-Verlag, New York, 1991, xvi+397 pp.
  6. T. Y. Lam, Lectures on modules and rings, Grad. Texts in Math., 189, Springer-Verlag, New York, 1998, xxiv+557 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kaleeva G.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).