Universal equivalence of general linear groups over local rings with 1/2

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is proved that the universal equivalence of full linear groups of order strictly greater than 2 over local, not necessarily commutative rings with 1/2 is equivalent to the coincidence of their orders and the universal equivalence of the respective rings or the universal equivalence of one ring to the ring opposite to the other.

Sobre autores

Galina Kaleeva

Lomonosov Moscow State University, Moscow, Russia

Email: galinakaleeva@yandex.ru
without scientific degree, no status

Bibliografia

  1. C. I. Beidar, A. V. Michalev, “On Malcev's theorem on elementary equivalence of linear groups”, Proceedings of the international conference on algebra, Part 1 (Novosibirsk, 1989), Contemp. Math., 131, Part 1, Amer. Math. Soc., Providence, RI, 1992, 29–35
  2. D. Segal, K. Tent, “Defining $R$ and $G(R)$”, J. Eur. Math. Soc. (JEMS), 25:8 (2023), 3325–3358
  3. N. Avni, A. Lubotsky, C. Meiri, “First order rigidity of non-uniform higher rank arithmetic groups”, Invent. Math., 217:1 (2019), 219–240
  4. A. G. Myasnikov, M. Sohrabi, Bi-interpretability with $mathbb{Z}$ and models of the complete elementary theories of $operatorname{SL}_n(O)$, $mathrm T_n(O)$ and $operatorname{GL}_n(O)$, $n geq 3$
  5. T. Y. Lam, A first course in noncommutative rings, Grad. Texts in Math., 131, Springer-Verlag, New York, 1991, xvi+397 pp.
  6. T. Y. Lam, Lectures on modules and rings, Grad. Texts in Math., 189, Springer-Verlag, New York, 1998, xxiv+557 pp.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Kaleeva G.A., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).