Avkhadiev–Wirths conjecture on best Brezis–Marcus constants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study Hardy-type inequalities with additional terms. The constant $\lambda(\Omega)$ multiplying the additional term depends on the geometry of the multidimensional domain $\Omega$ and the numerical parameters of the problem. This constant (functional) is commonly called the Brezis–Marcus constant. Avkhadiev and Wirths [1] put forward the conjecture that, over all $n$-dimensional domains with fixed inner radius $\delta_0$, the maximum best Brezis–Marcus constant is $\lambda(B_n)$, where $B_n $ is the $n$-ball of radius $\delta_0$. We improve the previously available lower estimates for $\lambda(B_n)$, for $n=2$ and $n= 4,…,10$, which takes us closer to this conjecture. Bibliography: 18 titles.

About the authors

Ramil' Gaisaevich Nasibullin

N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kazan, Russia

Author for correspondence.
Email: NasibullinRamil@gmail.com
Candidate of physico-mathematical sciences, Associate professor

References

  1. F. G. Avkhadiev, K.-J. Wirths, “On the best constants for the Brezis–Marcus inequalities in balls”, J. Math. Anal. Appl., 396:2 (2012), 473–480
  2. H. Brezis, M. Marcus, “Hardy's inequalities revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1-2 (1997), 217–237
  3. Ф. Г. Авхадиев, “Геометрическое описание областей, для которых константа Харди равна $1/4$”, Изв. РАН. Сер. матем., 78:5 (2014), 3–26
  4. A. A. Balinsky, W. D. Evans, R. T. Lewis, The analysis and geometry of Hardy's inequality, Universitext, Springer, Cham, 2015, xv+263 pp.
  5. Р. Г. Насибуллин, “Геометрия одномерных и пространственных неравенств типа Харди”, Изв. вузов. Матем., 2022, № 11, 52–88
  6. S. Filippas, V. Maz'ya, A. Tertikas, “On a question of Brezis and Marcus”, Calc. Var. Partial Differential Equations, 25:4 (2006), 491–501
  7. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548
  8. F. G. Avkhadiev, K.-J. Wirths, “Unified Poincare and Hardy inequalities with sharp constants for convex domains”, ZAMM Z. Angew. Math. Mech., 87:8-9 (2007), 632–642
  9. F. G. Avkhadiev, K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb's constant”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736
  10. G. Barbatis, S. Filippas, A. Tertikas, “Refined geometric $L^p$ Hardy inequalities”, Commun. Contemp. Math., 5:6 (2003), 869–881
  11. C. Bandle, Isoperimetric inequalities and applications, Monogr. Stud. Math., 7, Pitman (Advanced Publishing Program), Boston, MA–London, 1980, x+228 pp.
  12. J. Hersch, “Sur la frequence fondamentale d'une membrane vibrante: evaluations par defaut et principe de maximum”, Z. Angew. Math. Phys., 11 (1960), 387–413
  13. L. Brasco, D. Mazzoleni, “On principal frequencies, volume and inradius in convex sets”, NoDEA Nonlinear Differential Equations Appl., 27:2 (2020), 12, 26 pp.
  14. V. Bobkov, S. Kolonitskii, “Improved Friedrichs inequality for a subhomogeneous embedding”, J. Math. Anal. Appl., 527:1 (2023), 127383, 29 pp.
  15. V. Bobkov, M. Tanaka, “On subhomogeneous indefinite $p$-Laplace equations in the supercritical spectral interval”, Calc. Var. Partial Differential Equations, 62:1 (2023), 22, 39 pp.
  16. Р. Г. Насибуллин, “Неравенства типа Харди для одной весовой функции и их применения”, Изв. РАН. Сер. матем., 87:2 (2023), 168–195
  17. Р. Г. Насибуллин, “Неравенства Харди для веса Якоби и их применения”, Сиб. матем. журн., 63:6 (2022), 1313–1333
  18. Дж. Н. Ватсон, Теория бесселевых функций, т. 1, 2, ИЛ, М., 1949, 798 с., 220 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Nasibullin R.G.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).