Гипотеза Авхадиева–Вирца о наилучших константах Брезиса–Маркуса

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Статья посвящена неравенствам типа Харди с дополнительными слагаемыми. Постоянная $\lambda(\Omega)$, стоящая перед дополнительным слагаемым, зависит от геометрии многомерной области $\Omega$ и числовых параметров задачи. Эту константу-функционал в литературе обычно называют константой Брезиса–Маркуса. Ф. Г. Авхадиев и К.-Й. Вирц в статье [1] выдвинули гипотезу, что среди всех $n$-мерных областей с заданным внутренним радиусом $\delta_0$ максимум наилучших констант Брезиса–Маркуса представляет собой $\lambda(B_n)$, где $B_n $ – $n$-мерный шар радиуса $\delta_0$. В настоящей статье мы улучшаем известные нижние оценки $\lambda(B_n)$ при $n=2$ и $n= 4,…,10$, что нас делает ближе к подтверждению этой гипотезы.Библиография: 18 названий.

Об авторах

Рамиль Гайсаевич Насибуллин

Институт математики и механики им. Н. И. Лобачевского, Казанский (Приволжский) федеральный университет

Автор, ответственный за переписку.
Email: NasibullinRamil@gmail.com
кандидат физико-математических наук, доцент

Список литературы

  1. F. G. Avkhadiev, K.-J. Wirths, “On the best constants for the Brezis–Marcus inequalities in balls”, J. Math. Anal. Appl., 396:2 (2012), 473–480
  2. H. Brezis, M. Marcus, “Hardy's inequalities revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1-2 (1997), 217–237
  3. Ф. Г. Авхадиев, “Геометрическое описание областей, для которых константа Харди равна $1/4$”, Изв. РАН. Сер. матем., 78:5 (2014), 3–26
  4. A. A. Balinsky, W. D. Evans, R. T. Lewis, The analysis and geometry of Hardy's inequality, Universitext, Springer, Cham, 2015, xv+263 pp.
  5. Р. Г. Насибуллин, “Геометрия одномерных и пространственных неравенств типа Харди”, Изв. вузов. Матем., 2022, № 11, 52–88
  6. S. Filippas, V. Maz'ya, A. Tertikas, “On a question of Brezis and Marcus”, Calc. Var. Partial Differential Equations, 25:4 (2006), 491–501
  7. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548
  8. F. G. Avkhadiev, K.-J. Wirths, “Unified Poincare and Hardy inequalities with sharp constants for convex domains”, ZAMM Z. Angew. Math. Mech., 87:8-9 (2007), 632–642
  9. F. G. Avkhadiev, K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb's constant”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736
  10. G. Barbatis, S. Filippas, A. Tertikas, “Refined geometric $L^p$ Hardy inequalities”, Commun. Contemp. Math., 5:6 (2003), 869–881
  11. C. Bandle, Isoperimetric inequalities and applications, Monogr. Stud. Math., 7, Pitman (Advanced Publishing Program), Boston, MA–London, 1980, x+228 pp.
  12. J. Hersch, “Sur la frequence fondamentale d'une membrane vibrante: evaluations par defaut et principe de maximum”, Z. Angew. Math. Phys., 11 (1960), 387–413
  13. L. Brasco, D. Mazzoleni, “On principal frequencies, volume and inradius in convex sets”, NoDEA Nonlinear Differential Equations Appl., 27:2 (2020), 12, 26 pp.
  14. V. Bobkov, S. Kolonitskii, “Improved Friedrichs inequality for a subhomogeneous embedding”, J. Math. Anal. Appl., 527:1 (2023), 127383, 29 pp.
  15. V. Bobkov, M. Tanaka, “On subhomogeneous indefinite $p$-Laplace equations in the supercritical spectral interval”, Calc. Var. Partial Differential Equations, 62:1 (2023), 22, 39 pp.
  16. Р. Г. Насибуллин, “Неравенства типа Харди для одной весовой функции и их применения”, Изв. РАН. Сер. матем., 87:2 (2023), 168–195
  17. Р. Г. Насибуллин, “Неравенства Харди для веса Якоби и их применения”, Сиб. матем. журн., 63:6 (2022), 1313–1333
  18. Дж. Н. Ватсон, Теория бесселевых функций, т. 1, 2, ИЛ, М., 1949, 798 с., 220 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Насибуллин Р.Г., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).