Classification of nonsingular four-dimensional flows with a untwisted saddle orbit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The topological equivalence of low-dimensional Morse–Smale flows without fixed point (NMS-flows) under assumptions of various generality is the subject of a number of publications. Starting from dimension 4, there are only few results on classification. However, it is known that there exists nonsingular flows with wildly embedded invariant saddle manifolds. In this paper the class of nonsingular Morse–Smale flows on closed orientable 4-manifolds with a unique saddle orbit which is, moreover, nontwisted, is considered. It is shown that the equivalence class of a certain knot embedded in $\mathbb S^2\times\mathbb S^1$ is a complete invariant of such a flow. Given a knot in $\mathbb S^2\times\mathbb S^1$, a standard representative in the class of flows under consideration is constructed. The supporting manifold of all such flows is shown to be the manifold $\mathbb S^3\times\mathbb S^1$.Bibliography: 24 titles.

About the authors

Vladislav Dmitrievich Galkin

National Research University – Higher School of Economics in Nizhny Novgorod

Email: vgalkin@hse.ru

Olga Vital'evna Pochinka

National Research University – Higher School of Economics in Nizhny Novgorod

Email: olga-pochinka@yandex.ru
ORCID iD: 0000-0002-6587-5305
Doctor of physico-mathematical sciences, no status

Danila Denisovich Shubin

National Research University – Higher School of Economics in Nizhny Novgorod

Email: schub.danil@yandex.ru

References

  1. P. M. Akhmet'ev, T. V. Medvedev, O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp.
  2. F. Bonahon, J.-P. Otal, “Scindements de Heegaard des espaces lenticulaires”, Ann. Sci. Ecole Norm. Sup. (4), 16:3 (1983), 451–466
  3. C. Bonatti, V. Z. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602
  4. C. Bonatti, V. Grines, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558
  5. J. Franks, “Nonsingular Smale flows on $S^3$”, Topology, 24:3 (1985), 265–282
  6. D. Gabai, “Foliations and the topology of 3-manifolds. III”, J. Differential Geom., 26:3 (1987), 479–536
  7. C. McA. Gordon, J. Luecke, “Knots are determined by their complements”, J. Amer. Math. Soc., 2:2 (1989), 371–415
  8. V. Grines, Yu. Levchenko, V. Medvedev, O. Pochinka, “The topological classification of structurally stable 3-diffeomorphisms with two-dimensional basic sets”, Nonlinearity, 28:11 (2015), 4081–4102
  9. В. З. Гринес, Е. В. Жужома, В. С. Медведев, О. В. Починка, “Глобальные аттрактор и репеллер диффеоморфизмов Морса–Смейла”, Дифференциальные уравнения и топология. II, Сборник статей. К 100-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 271, МАИК «Наука/Интерпериодика», М., 2010, 111–133
  10. В. Гуревич, Г. Волмэн, Теория размерности, ИЛ, М., 1948, 232 с.
  11. M. C. Irwin, “A classification of elementary cycles”, Topology, 9:1 (1970), 35–47
  12. N. L. Max, “Homeomorphisms of $S^{n}times S^{1}$”, Bull. Amer. Math. Soc., 73:6 (1967), 939–942
  13. W. D. Neumann, Notes on geometry and 3-manifolds, Citeseer, 1996
  14. E. M. Osenkov, O. V. Pochinka, Morse–Smale 3-diffeomorphisms with saddles of the same unstable manifold dimension
  15. D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172
  16. O. V. Pochinka, D. D. Shubin, “On 4-dimensional flows with wildly embedded invariant manifolds of a periodic orbit”, Appl. Math. Nonlinear Sci., 5:2 (2020), 261–266
  17. O. V. Pochinka, D. D. Shubin, “Non-singular Morse–Smale flows on $n$-manifolds with attractor-repeller dynamics”, Nonlinearity, 35:3 (2022), 1485–1499
  18. D. Rolfsen, Knots and links, AMS Chelsea Publ. Ser., 346, Reprint with corr. of the 1976 ed., Amer. Math. Soc., Providence, RI, 2003, ix+439 pp.
  19. С. Смейл, “Дифференцируемые динамические системы”, УМН, 25:1(151) (1970), 113–185
  20. Я. Л. Уманский, “Необходимые и достаточные условия топологической эквивалентности трехмерных динамических систем Морса–Смейла с конечным числом особых траекторий”, Матем. сб., 181:2 (1990), 212–239
  21. V. Galkin, O. Pochinka, D. Shubin, Classification of NMS-flows with unique twisted saddle orbit on orientable 4-manifolds
  22. Bin Yu, “Behavior $0$ nonsingular Morse Smale flows on $S^3$”, Discrete Contin. Dyn. Syst., 36:1 (2016), 509–540
  23. О. В. Починка, Д. Д. Шубин, “Неособые потоки Морса-Смейла с тремя периодическими орбитами на ориентируемых $3$-многообразиях”, Матем. заметки, 112:3 (2022), 426–443
  24. А. О. Пришляк, “Полный топологический инвариант потоков Морса–Смейла и разложений на ручки трeхмерных многообразий”, Фундамент. и прикл. матем., 11:4 (2005), 185–196

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Галкин В.D., Починка О.V., Шубин Д.D.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).