Error estimates in homogenization of elliptic operators with account of correctors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Для действующих в пространстве $\mathbb{R}^d$ дивергентных эллиптических операторов второго порядка с $\varepsilon$-периодическими измеримыми коэффициентами построены аппроксимации резольвенты в операторной норме $\|\cdot\|_{H^1{\to}H^1}$ с остаточным членом порядка $\varepsilon^2$ при $\varepsilon\to 0$. Применяется метод двухмасштабных разложений по степеням $\varepsilon$ до второй включительно. Недостаток гладкости в данных задачи преодолевается с помощью сглаживания по Стеклову или его итераций. Рассмотрены сначала скалярные дифференциальные операторы с вещественной матрицей коэффициентов, действующие на функциях $u\colon \mathbb{R}^d\to \mathbb{R}$, а затем матричные дифференциальные операторы с комплекснозначным тензором четвертого порядка, действующие на функциях $u\colon \mathbb{R}^d\to \mathbb{C}^n$.Библиография: 20 названий.

About the authors

Svetlana Evgenievna Pastukhova

MIREA — Russian Technological University

Email: pas-se@yandex.ru
Doctor of physico-mathematical sciences, Professor

References

  1. Н. С. Бахвалов, “Осреднение дифференциальных уравнений с частными производными с быстро осциллирующими коэффициентами”, Докл. АН СССР, 221:3 (1975), 516–519
  2. A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publishing Co., Amsterdam–New York, 1978, xxiv+700 pp.
  3. В. В. Жиков, С. М. Козлов, О. А. Олейник, Ха Тьен Нгоан, “Усреднение и $G$-сходимость дифференциальных операторов”, УМН, 34:5(209) (1979), 65–133
  4. Н. С. Бахвалов, Г. П. Панасенко, Осреднение процессов в периодических средах. Математические задачи механики композиционных материалов, Наука, М., 1984, 352 с.
  5. В. В. Жиков, С. М. Козлов, О. А. Олейник, Усреднение дифференциальных операторов, Физматлит, М., 1993, 464 с.
  6. М. Ш. Бирман, Т. А. Суслина, “Периодические дифференциальные операторы второго порядка. Пороговые свойства и усреднения”, Алгебра и анализ, 15:5 (2003), 1–108
  7. В. В. Жиков, “Об операторных оценках в теории усреднения”, Докл. РАН, 403:3 (2005), 305–308
  8. V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524
  9. S. E. Pastukhova, “Approximations of resolvents of second order elliptic operators with periodic coefficients”, J. Math. Sci. (N.Y.), 267:3 (2022), 382–397
  10. Е. С. Василевская, Т. А. Суслина, “Усреднение параболических и эллиптических периодических операторов в $L_2(mathbb{R}^d)$ при учете первого и второго корректоров”, Алгебра и анализ, 24:2 (2012), 1–103
  11. М. Ш. Бирман, Т. А. Суслина, “Усреднение периодических эллиптических дифференциальных операторов с учетом корректора”, Алгебра и анализ, 17:6 (2005), 1–104
  12. В. В. Жиков, “О спектральном методе в теории усреднения”, Дифференциальные уравнения и динамические системы, Сборник статей, Труды МИАН, 250, Наука, МАИК «Наука/Интерпериодика», М., 2005, 95–104
  13. С. Е. Пастухова, “Об улучшенных аппроксимациях резольвенты в усреднении операторов второго порядка с периодическими коэффициентами”, Функц. анализ и его прил., 56:4 (2022), 93–104
  14. О. А. Ладыженская, Н. Н. Уральцева, Линейные и квазилинейные уравнения эллиптического типа, Наука, М., 1964, 538 с.
  15. Д. Киндерлерер, Г. Стампаккья, Введение в вариационные неравенства и их приложения, Мир, М., 1983, 256 с.
  16. Т. А. Суслина, “Усреднение стационарной периодической системы Максвелла”, Алгебра и анализ, 16:5 (2004), 162–244
  17. В. В. Жиков, С. Е. Пастухова, “Об операторных оценках в теории усреднения”, УМН, 71:3(429) (2016), 27–122
  18. S. E. Pastukhova, “Homogenization estimates for singularly perturbed operators”, J. Math. Sci. (N.Y.), 251:5 (2020), 724–747
  19. Weisheng Niu, Yue Yuan, “Convergence rate in homogenization of elliptic systems with singular perturbations”, J. Math. Phys., 60:11 (2019), 111509, 7 pp.
  20. S. E. Pastukhova, “Operator estimates in homogenization of elliptic systems of equations”, J. Math. Sci. (N.Y.), 226:4 (2017), 445–461

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Пастухова С.E.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).