Slide polynomials and subword complexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Subword complexes were defined by Knutson and Miller in 2004 to describe Gröbner degenerations of matrix Schubert varieties. Subword complexes of a certain type are called pipe dream complexes. The facets of such a complex are indexed by pipe dreams, or, equivalently, by monomials in the corresponding Schubert polynomial. In 2017 Assaf and Searles defined a basis of slide polynomials, generalizing Stanley symmetric functions, and described a combinatorial rule for expanding Schubert polynomials in this basis. We describe a decomposition of subword complexes into strata called slide complexes. The slide complexes appearing in such a way are shown to be homeomorphic to balls or spheres. For pipe dream complexes, such strata correspond to slide polynomials. Bibliography: 14 titles.

About the authors

Evgeny Yurievich Smirnov

HSE University; Independent University of Moscow

Email: esmirnov@hse.ru
Candidate of physico-mathematical sciences, no status

Anna Alekseevna Tutubalina

HSE University

References

  1. S. Assaf, D. Searles, “Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams”, Adv. Math., 306 (2017), 89–122
  2. N. Bergeron, S. Billey, “RC-graphs and Schubert polynomials”, Experiment. Math., 2:4 (1993), 257–269
  3. И. Н. Бернштейн, И. М. Гельфанд, С. И. Гельфанд, “Клетки Шуберта и когомологии пространств $G/P$”, УМН, 28:3(171) (1973), 3–26
  4. L. J. Billera, J. Scott Provan, “A decomposition property for simplicial complexes and its relation to diameters and shellings”, Second international conference on combinatorial mathematics (New York, 1978), Ann. New York Acad. Sci., 319, New York Acad. Sci., New York, 1979, 82–85
  5. L. Escobar, K. Meszaros, “Subword complexes via triangulations of root polytopes”, Algebr. Comb., 1:3 (2018), 395–414
  6. S. Fomin, A. N. Kirillov, “Grothendieck polynomials and the Yang–Baxter equation”, Formal power series and algebraic combinatorics/Series formelles et combinatoire algebrique, DIMACS, Piscataway, NJ, 1994, 183–190
  7. S. Fomin, A. N. Kirillov, “The Yang–Baxter equation, symmetric functions, and Schubert polynomials” (Florence, 1993), Discrete Math., 153:1-3, Proceedings of the 5th conference on formal power series and algebraic combinatorics (1996), 123–143
  8. A. Knutson, E. Miller, “Subword complexes in Coxeter groups”, Adv. Math., 184:1 (2004), 161–176
  9. A. Knutson, E. Miller, “Gröbner geometry of Schubert polynomials”, Ann. of Math. (2), 161:3 (2005), 1245–1318
  10. A. Lascoux, “Anneau de Grothendieck de la variete de drapeaux”, The Grothendieck Festschrift, v. III, Mod. Birkhäuser Class., 88, Birkhäuser/Springer, Cham, 2007, 1–34
  11. A. Lascoux, M.-P. Schützenberger, “Polynômes de Schubert”, C. R. Acad. Sci. Paris Ser. I Math., 294:13 (1982), 447–450
  12. Е. Ю. Смирнов, А. А. Тутубалина, “Слайд-комплексы и комплексы подслов”, УМН, 75:6(456) (2020), 177–178
  13. V. Pilaud, Ch. Stump, “EL-labelings and canonical spanning trees for subword complexes”, Discrete geometry and optimization, Fields Inst. Commun., 69, Springer, New York, 2013, 213–248
  14. O. Pechenik, D. Searles, “Decompositions of Grothendieck polynomials”, Int. Math. Res. Not. IMRN, 2019:10 (2019), 3214–3241

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Смирнов Е.Y., Тутубалина А.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).