Слайд-многочлены и комплексы подслов
- Авторы: Смирнов Е.Ю.1,2, Тутубалина А.А.1
-
Учреждения:
- Национальный исследовательский университет "Высшая школа экономики"
- Независимый Московский университет
- Выпуск: Том 212, № 10 (2021)
- Страницы: 131-151
- Раздел: Статьи
- URL: https://journals.rcsi.science/0368-8666/article/view/142345
- DOI: https://doi.org/10.4213/sm9477
- ID: 142345
Цитировать
Аннотация
Ключевые слова
Об авторах
Евгений Юрьевич Смирнов
Национальный исследовательский университет "Высшая школа экономики"; Независимый Московский университет
Email: esmirnov@hse.ru
кандидат физико-математических наук, без звания
Анна Алексеевна Тутубалина
Национальный исследовательский университет "Высшая школа экономики"
Список литературы
- S. Assaf, D. Searles, “Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams”, Adv. Math., 306 (2017), 89–122
- N. Bergeron, S. Billey, “RC-graphs and Schubert polynomials”, Experiment. Math., 2:4 (1993), 257–269
- И. Н. Бернштейн, И. М. Гельфанд, С. И. Гельфанд, “Клетки Шуберта и когомологии пространств $G/P$”, УМН, 28:3(171) (1973), 3–26
- L. J. Billera, J. Scott Provan, “A decomposition property for simplicial complexes and its relation to diameters and shellings”, Second international conference on combinatorial mathematics (New York, 1978), Ann. New York Acad. Sci., 319, New York Acad. Sci., New York, 1979, 82–85
- L. Escobar, K. Meszaros, “Subword complexes via triangulations of root polytopes”, Algebr. Comb., 1:3 (2018), 395–414
- S. Fomin, A. N. Kirillov, “Grothendieck polynomials and the Yang–Baxter equation”, Formal power series and algebraic combinatorics/Series formelles et combinatoire algebrique, DIMACS, Piscataway, NJ, 1994, 183–190
- S. Fomin, A. N. Kirillov, “The Yang–Baxter equation, symmetric functions, and Schubert polynomials” (Florence, 1993), Discrete Math., 153:1-3, Proceedings of the 5th conference on formal power series and algebraic combinatorics (1996), 123–143
- A. Knutson, E. Miller, “Subword complexes in Coxeter groups”, Adv. Math., 184:1 (2004), 161–176
- A. Knutson, E. Miller, “Gröbner geometry of Schubert polynomials”, Ann. of Math. (2), 161:3 (2005), 1245–1318
- A. Lascoux, “Anneau de Grothendieck de la variete de drapeaux”, The Grothendieck Festschrift, v. III, Mod. Birkhäuser Class., 88, Birkhäuser/Springer, Cham, 2007, 1–34
- A. Lascoux, M.-P. Schützenberger, “Polynômes de Schubert”, C. R. Acad. Sci. Paris Ser. I Math., 294:13 (1982), 447–450
- Е. Ю. Смирнов, А. А. Тутубалина, “Слайд-комплексы и комплексы подслов”, УМН, 75:6(456) (2020), 177–178
- V. Pilaud, Ch. Stump, “EL-labelings and canonical spanning trees for subword complexes”, Discrete geometry and optimization, Fields Inst. Commun., 69, Springer, New York, 2013, 213–248
- O. Pechenik, D. Searles, “Decompositions of Grothendieck polynomials”, Int. Math. Res. Not. IMRN, 2019:10 (2019), 3214–3241
Дополнительные файлы
