On volumes of hyperbolic right-angled polyhedra

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New upper bounds for the volumes of right-angled polyhedra in hyperbolic space $\mathbb{H}^3$ are obtained in the following three cases: for ideal polyhedra with all vertices on the ideal hyperbolic boundary; for compact polyhedra with only finite vertices; and for finite-volume polyhedra with vertices of both types.Bibliography: 23 titles.

About the authors

Stepan Andreevich Alexandrov

Moscow Institute of Physics and Technology (National Research University)

without scientific degree, no status

Nikolay Vladimirovich Bogachev

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute); Moscow Institute of Physics and Technology (National Research University)

without scientific degree, no status

Andrei Yurievich Vesnin

Tomsk State University; Novosibirsk State University; Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Email: vesnin@math.nsc.ru
Doctor of physico-mathematical sciences, Senior Researcher

Andrei Aleksandrovich Egorov

Novosibirsk State University

Email: a.egorov2@g.nsu.ru

References

  1. Е. М. Андреев, “О выпуклых многогранниках в пространствах Лобачевского”, Матем. сб., 81(123):3 (1970), 445–478
  2. Е. М. Андреев, “О выпуклых многогранниках конечного объема в пространстве Лобачевского”, Матем. сб., 83(125):2(10) (1970), 256–260
  3. C. K. Atkinson, “Volume estimates for equiangular hyperbolic Coxeter polyhedra”, Algebr. Geom. Topol., 9:2 (2009), 1225–1254
  4. G. Belletti, “The maximum volume of hyperbolic polyhedra”, Trans. Amer. Math. Soc., 374:2 (2021), 1125–1153
  5. В. М. Бухштабер, Т. Е. Панов, “О многообразиях, задаваемых 4-раскрасками простых 3-многогранников”, УМН, 71:6(432) (2016), 157–158
  6. A. Champanerkar, I. Kofman, J. Purcell, “Right-angled polyhedra and alternating links”, Algebr. Geom. Topol., 22:2 (2022), 739–784
  7. M. W. Davis, T. Januszkievicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451
  8. G. Dufour, “Notes on right-angled Coxeter polyhedra in hyperbolic spaces”, Geom. Dedicata, 147 (2010), 277–282
  9. A. Egorov, A. Vesnin, “Volume estimates for right-angled hyperbolic polyhedra”, Rend. Istit. Mat. Univ. Trieste, 52 (2020), 565–576
  10. A. A. Egorov, A. Yu. Vesnin, “On correlation of hyperbolic volumes of fullerenes with their properties”, Comput. Math. Biophys., 8:1 (2020), 150–167
  11. A. Yu. Vesnin, A. A. Egorov, “Ideal right-angled polyhedra in Lobachevsky space”, Чебышевский сб., 21:2 (2020), 65–83
  12. T. Inoue, “Exploring the list of smallest right-angled hyperbolic polyhedra”, Exp. Math., 31:1 (2022), 165–183
  13. R. Kellerhals, A polyhedral approach to the arithmetic and geometry of hyperbolic chain link complements, 2022, 23 pp.
  14. A. Kolpakov, B. Martelli, S. Tschantz, “Some hyperbolic three-manifolds that bound geometrically”, Proc. Amer. Math. Soc., 143:9 (2015), 4103–4111
  15. A. Kolpakov, “On the optimality of the ideal right-angled 24-cell”, Algebr. Geom. Topol., 12:4 (2012), 1941–1960
  16. J. S. Meyer, C. Millichap, R. Trapp, “Arithmeticity and hidden symmetries of fully augmented pretzel link complements”, New York J. Math., 26 (2020), 149–183
  17. L. Potyagailo, E. Vinberg, “On right-angled reflection groups in hyperbolic spaces”, Comment. Math. Helv., 80:1 (2005), 63–73
  18. R. K. W. Roeder, J. H. Hubbard, W. D. Dunbar, “Andreev's theorem on hyperbolic polyhedra”, Ann. Inst. Fourier (Grenoble), 57:3 (2007), 825–882
  19. W. Thurston, The geometry and topology of three-manifolds, Princeton lecture notes, unpublished, 1980, vii+360 pp.
  20. А. Ю. Веснин, “Объемы трехмерных гиперболических многообразий Лeбелля”, Матем. заметки, 64:1 (1998), 17–23
  21. А. Ю. Веснин, “Прямоугольные многогранники и трехмерные гиперболические многообразия”, УМН, 72:2(434) (2017), 147–190
  22. Э. Б. Винберг, “Гиперболические группы отражений”, УМН, 40:1(241) (1985), 29–66
  23. Э. Б. Винберг, “Объемы неевклидовых многогранников”, УМН, 48:2(290) (1993), 17–46

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Alexandrov S.A., Bogachev N.V., Vesnin A.Y., Egorov A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).