A direct proof of Stahl's theorem for a generic class of algebraic functions
- Authors: Suetin S.P.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 213, No 11 (2022)
- Pages: 102-117
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133495
- DOI: https://doi.org/10.4213/sm9649
- ID: 133495
Cite item
Abstract
Under the assumption that Stahl's $S$-compact set exists we give a short proof of the limiting distribution of the zeros of Pade polynomials and the convergence in capacity of diagonal Pade approximants for a generic class of algebraic functions. The proof is direct, rather than by contradiction as Stahl's original proof was. The ‘generic class’ means, in particular, that all the ramification points of the multisheeted Riemann surface of the algebraic function in question are of the second order (that is, all branch points of the function are of square root type). As a consequence, a conjecture of Gonchar relating to Pade approximations is proved for this class of algebraic functions. We do not use the relations of orthogonality for Pade polynomials. The proof is based on the maximum principle only. Bibliography: 19 titles.
About the authors
Sergey Pavlovich Suetin
Steklov Mathematical Institute of Russian Academy of Sciences
Email: suetin@mi-ras.ru
Doctor of physico-mathematical sciences, no status
References
- А. И. Аптекарев, В. И. Буслаев, А. Мартинес-Финкельштейн, С. П. Суетин, “Аппроксимации Паде, непрерывные дроби и ортогональные многочлены”, УМН, 66:6(402) (2011), 37–122
- A. I. Aptekarev, M. L. Yattselev, “Pade approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280
- В. И. Буслаев, “О нижней оценке скорости сходимости многоточечных аппроксимаций Паде кусочно аналитических функций”, Изв. РАН. Сер. матем., 85:3 (2021), 13–29
- Е. М. Чирка, “Емкости на компактной римановой поверхности”, Труды МИАН, 311, Анализ и математическая физика. Сборник статей. К 70-летию со дня рождения профессора Армена Глебовича Сергеева (2020), 41–83
- А. А. Гончар, Е. А. Рахманов, “Равновесные распределения и скорость рациональной аппроксимации аналитических функций”, Матем. сб., 134(176):3(11) (1987), 306–352
- А. В. Комлов, “Полиномиальная $m$-система Эрмита–Паде для мероморфных функций на компактной римановой поверхности”, Матем. сб., 212:12 (2021), 40–76
- Н. С. Ландкоф, Основы современной теории потенцила, Наука, М., 1966, 515 с.
- А. Мартинес-Финкельштейн, Е. А. Рахманов, С. П. Суетин, “Вариация равновесной энергии и $S$-свойство стационарного компакта”, Матем. сб., 202:12 (2011), 113–136
- J. Nuttall, S. R. Singh, “Orthogonal polynomials and Pade approximants associated with a system of arcs”, J. Approx. Theory, 21:1 (1977), 1–42
- J. Nuttall, “Asymptotics of diagonal Hermite–Pade polynomials”, J. Approx. Theory, 42:4 (1984), 299–386
- Е. А. Перевозникова, Е. А. Рахманов, Вариация равновесной энергии и $S$-свойство компактов минимальной емкости, Рукопись, 1994
- Е. А. Рахманов, “О сходимости диагональных аппроксимаций Паде”, Матем. сб., 104(146):2(10) (1977), 271–291
- E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239
- E. B. Saff, V. Totik, Logarithmic potentials with external fields, Appendix B by T. Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp.
- H. Stahl, “Three different approaches to a proof of convergence for Pade approximants”, Rational approximation and applications in mathematics and physics (Łancut, 1985), Lecture Notes in Math., 1237, Springer, Berlin, 1987, 79–124
- H. Stahl, “Diagonal Pade approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse Math. (6), 1996, special issue, 121–193
- H. Stahl, “The convergence of Pade approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204
- H. R. Stahl, Sets of minimal capacity and extremal domains
- М. Л. Ятцелев, “Сходимость двухточечных аппроксимаций Паде к кусочно голоморфным функциям”, Матем. сб., 212:11 (2021), 128–164
Supplementary files

