Convergence of two-point Pade approximants to piecewise holomorphic functions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $f_0$ and $f_\infty$ be formal power series at the origin and infinity, and $P_n/Q_n$, $\deg(P_n),\deg(Q_n)\leq n$, be the rational function that simultaneously interpolates $f_0$ at the origin with order $n$ and $f_\infty$ at infinity with order ${n+1}$. When germs $f_0$ and $f_\infty$ represent multi-valued functions with finitely many branch points, it was shown by Buslaev that there exists a unique compact set $F$ in the complement of which the approximants converge in capacity to the approximated functions. The set $F$ may or may not separate the plane. We study uniform convergence of the approximants for the geometrically simplest sets $F$ that do separate the plane. Bibliography: 26 titles.

About the authors

Maxim Leonidovich Yattselev

Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis; Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Email: maxyatts@iupui.edu
PhD, no status

References

  1. A. I. Aptekarev, M. L. Yattselev, “Pade approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280
  2. L. Baratchart, H. Stahl, M. Yattselev, “Weighted extremal domains and best rational approximation”, Adv. Math., 229:1 (2012), 357–407
  3. L. Baratchart, M. Yattselev, “Convergent interpolation to Cauchy integrals over analytic arcs”, Found. Comput. Math., 9:6 (2009), 675–715
  4. L. Baratchart, M. Yattselev, “Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights”, Int. Math. Res. Not. IMRN, 2010:22 (2010), 4211–4275
  5. В. И. Буслаев, “О сходимости многоточечных аппроксимаций Паде кусочно аналитических функций”, Матем. сб., 204:2 (2013), 39–72
  6. В. И. Буслаев, “О сходимости $m$-точечных аппроксимаций Паде набора многозначных аналитических функций”, Матем. сб., 206:2 (2015), 5–30
  7. P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2000, viii+273 pp.
  8. P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552
  9. P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368
  10. A. S. Fokas, A. R. Its, A. V. Kitaev, “Discrete Panleve equations and their appearance in quantum gravity”, Comm. Math. Phys., 142:2 (1991), 313–344
  11. A. S. Fokas, A. R. Its, A. V. Kitaev, “The isomonodromy approach to matrix models in $2D$ quantum gravitaty”, Comm. Math. Phys., 147:2 (1992), 395–430
  12. Ф. Д. Гахов, Краевые задачи, 3-е изд., Наука, М., 1977, 640 с.
  13. А. А. Гончар, Е. А. Рахманов, “Равновесные распределения и скорость рациональной аппроксимации аналитических функций”, Матем. сб., 134(176):3(11) (1987), 306–352
  14. A. B. Kuijlaars, K. T.-R. McLaughlin, W. Van Assche, M. Vanlessen, “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188:2 (2004), 337–398
  15. G. Lopez, “Szegő's theorem for polynomials orthogonal with respect to varying measures”, Orthogonal polynomials and their applications (Segovia, 1986), Lecture Notes in Math., 1329, Spinger, Berlin, 1988, 255–260
  16. E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239
  17. T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp.
  18. H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324
  19. H. Stahl, “Extremal domains associated with an analytic function. II”, Complex Variables Theory Appl., 4:4 (1985), 325–338
  20. H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354
  21. H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2:3 (1986), 225–240
  22. H. Stahl, “Orthogonal polynomials with complex-valued weight function. II”, Constr. Approx., 2:3 (1986), 241–251
  23. H. Stahl, “The convergence of Pade approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204
  24. H. Stahl, “Strong asymptotics for orthonormal polynomials with varying weights”, Acta Sci. Math. (Szeged), 66:1-2 (2000), 147–192
  25. M. L. Yattselev, “Symmetric contours and convergent interpolation”, J. Approx. Theory, 225 (2018), 76–105
  26. Э. И. Зверович, “Краевые задачи теории аналитических функций в гeльдеровских классах на римановых поверхностях”, УМН, 26:1(157) (1971), 113–179

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Yattselev M.L.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).