Global boundedness of functions of finite order that are bounded outside small sets
- Authors: Khabibullin B.N.1
-
Affiliations:
- Bashkir State University
- Issue: Vol 212, No 11 (2021)
- Pages: 116-127
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133480
- DOI: https://doi.org/10.4213/sm9502
- ID: 133480
Cite item
Abstract
We prove that subharmonic or holomorphic functions of finite order on the plane, in space, or on the unit disc or ball that are bounded above on a sequence of circles or spheres, or on a system of embedded discs or balls, outside some asymptotically small sets are bounded above throughout. Hence, subharmonic functions of finite order on the complex plane, entire or plurisubharmonic functions of finite order, and also convex or harmonic functions of finite order that are bounded above on spheres outside such sets are constants. The results and the approaches to the proofs are new for both functions of one and several variables. Bibliography: 14 titles.
About the authors
Bulat Nurmievich Khabibullin
Bashkir State University
Email: khabib-bulat@mail.ru
Doctor of physico-mathematical sciences, Professor
References
- T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp.
- У. Хейман, П. Кеннеди, Субгармонические функции, Мир, М., 1980, 304 с.
- L. Hörmander, Notions of convexity, Progr. Math., 127, Birkhäuser Boston, Inc., Boston, MA, 1994, viii+414 pp.
- S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Grad. Texts in Math., 137, 2nd ed., Springer-Verlag, New York, 2001, xii+259 pp.
- A. Baranov, Yu. Belov, A. Borichev, “Summability properties of Gabor expansions”, J. Funct. Anal., 274:9 (2018), 2532–2552
- A. Baranov, Y. Belov, A. Borichev, Summability properties of Gabor expansions, 2018
- Y. Belov, A. Borichev, The Newman–Shapiro problem, 2018
- A. Aleman, A. Baranov, Y. Belov, H. Hedenmalm, Backward shift and nearly invariant subspaces of Fock-type spaces, 2020
- Б. Н. Хабибуллин, К теореме Лиувилля для целых функций конечного порядка, 2020
- Б. Н. Хабибуллин, Теоремы типа Лиувилля вне малых исключительных множеств для функций конечного порядка, 2020
- Б. Н. Хабибуллин, “Теоремы типа Лиувилля для функций конечного порядка”, Уфим. матем. журн., 12:4 (2020), 117–121
- Б. Н. Хабибуллин, А. В. Шмелeва, “Выметание мер и субгармонических функций на систему лучей. I. Классический случай”, Алгебра и анализ, 31:1 (2019), 156–210
- A. F. Beardon, “Integral means of subharmonic functions”, Proc. Cambridge Philos. Soc., 69:1 (1971), 151–152
- P. Freitas, J. P. Matos, “On the characterization of harmonic and subharmonic functions via mean-value properties”, Potential Anal., 32 (2010), 189–200
Supplementary files

